scholarly journals A novel keratan sulphate domain preferentially expressed on the large aggregating proteoglycan from human articular cartilage is recognized by the monoclonal antibody 3D12/H7

1996 ◽  
Vol 318 (3) ◽  
pp. 1051-1056 ◽  
Author(s):  
Dagmar-Christiane FISCHER ◽  
Hans-Dieter HAUBECK ◽  
Kirsten EICH ◽  
Susanne KOLBE-BUSCH ◽  
Georg STÖCKER ◽  
...  

Monoclonal antibodies (mAbs) were prepared against aggrecan which has been isolated from human articular cartilage and purified by several chromatographic steps. One of these mAbs, the aggrecan-specific mAb 3D12/H7, was selected for further characterization. The data presented indicate that this mAb recognizes a novel domain of keratan sulphate chains from aggrecan: (1) immunochemical staining of aggrecan is abolished by treatment with keratanase/keratanase II, but not with keratanase or chondroitin sulphate lyase AC/ABC; (2) after chemical deglycosylation of aggrecan no staining of the core-protein was observed; (3) different immunochemical reactivity was observed against keratan sulphates from articular cartilage, intervertebral disc and cornea for the mAbs 3D12/H7 and 5D4. For further characterization of the epitope, reduced and 3H-labelled keratan sulphate chains were prepared. In an IEF–gel-shift assay it was shown that the 3H-labelled oligosaccharides obtained after keratanase digestion of reduced and 3H-labelled keratan sulphate chains were recognized by the mAb 3D12/H7. Thus it can be concluded that the mAb 3D12/H7 recognizes an epitope in the linkage region present in, at least some, keratan sulphate chains of the large aggregating proteoglycan from human articular cartilage. Moreover, this domain seems to be expressed preferentially on those keratan sulphate chains which occur in the chondroitin sulphate-rich region of aggrecan, since the antibody does not recognize the keratan sulphate-rich region obtained after combined chondroitinase AC/ABC and trypsin digestion of aggrecan.

1993 ◽  
Vol 293 (1) ◽  
pp. 165-172 ◽  
Author(s):  
V Vilím ◽  
A J Fosang

Approx. 10% of the total proteoglycan content of normal young human articular cartilage was extracted under associative conditions with Dulbecco's PBS. Proteoglycans isolated from the extract by Q-Sepharose chromatography were separated by gel chromatography and characterized by gradient gel SDS/PAGE and immunoblotting. Three species of small proteoglycans, two main populations of aggrecan and a population of its smaller fragments were identified. The major populations of aggrecan contained chondroitin sulphate chains, all or part of the N-terminal G1 and G2 domains and, therefore, intact keratan sulphate domains. The larger population was estimated by gradient SDS/PAGE to have a molecular mass of approx. 600 kDa or greater. The second population had an apparent molecular mass of approx. 300-600 kDa. Core proteins derived from these populations of proteoglycans separated on SDS/PAGE into several clusters of bands in the range from 120 to approx. 360 kDa. The extract further contained smaller fragments which lacked chondroitin sulphate but reacted with antibodies against keratan sulphate, and against epitopes present in the G2 domain of aggrecan. The presence of the G2 domain in a broad range of populations of decreasing size indicated extensive cleavage of the aggrecan core protein within its chondroitin sulphate domain. These findings suggest that fragmentation of aggrecan probably occurs in vivo in normal articular cartilage of young individuals. Associative extracts also contained decorin, biglycan and fibromodulin. These were resolved from aggrecan by gel chromatography and identified by immunodetection.


1989 ◽  
Vol 259 (1) ◽  
pp. 21-25 ◽  
Author(s):  
M A Campbell ◽  
C J Handley ◽  
S E D'Souza

By using an e.l.i.s.a. method it was demonstrated that the majority of proteoglycans released into the medium of both control and retinoic acid-treated explant cultures of bovine articular cartilage did not contain a hyaluronate-binding region. This supports our previous findings [Campbell & Handley (1987) Arch. Biochem. Biophys. 258, 143-155] that proteoglycans released into the medium of both cultures were of smaller hydrodynamic size, more polydisperse and unable to form aggregates with hyaluronate. Analysis of 35S-labelled core proteins associated with proteoglycans released into the medium of both cultures by using SDS/polyacrylamide-gel electrophoresis and fluorography indicated the presence of a series of core-protein bands (Mr approx. 300,000, 230,000, 215,000, 200,000, 180,000, 140,000, 135,000, 105,000, 85,000 and 60,000) compared with three core proteins derived from the proteoglycans remaining in the matrix (Mr 300,000, 230,000 and 215,000). Further analysis of the core proteins released into the medium indicated that the larger core proteins associated with medium proteoglycans contain both chondroitin sulphate and keratan sulphate glycosaminoglycans whereas the smaller core proteins contain only chondroitin sulphate chains. These experiments provide definitive evidence that the loss of proteoglycans from the matrix involves proteolytic cleavage at various sites along the proteoglycan core protein.


1987 ◽  
Vol 248 (3) ◽  
pp. 735-740 ◽  
Author(s):  
C Webber ◽  
T T Glant ◽  
P J Roughley ◽  
A R Poole

After chromatography on Sepharose CL-2B under associative conditions, high-buoyant-density human articular-cartilage proteoglycans were analysed biochemically and by radioimmunoassay with monoclonal antibodies to a core-protein-related epitope and to keratan sulphate. An examination of proteoglycans from individuals of different ages revealed the presence at 1 year of mainly a single polydisperse population containing chondroitin sulphate (uronic acid) and keratan sulphate. From 4 years onwards a smaller keratan sulphate-rich and chondroitin sulphate-deficient population appears in increasing amounts until 15 years. At the same time the larger population shows a progressive decrease in size from 1 year onward. By 23 years and after the proportion of keratan sulphate in the larger chondroitin sulphate-rich proteoglycan increases. Both adult proteoglycan populations are shown immunologically to aggregate with hyaluronic acid, with the smaller showing a greater degree of interaction. The larger population is richer in serine and glycine, and the smaller population contains more glutamic acid/glutamine, alanine, phenylalanine, lysine and arginine; its protein content is also higher. Whether the larger post-natal population represents a different gene product from the single polydisperse population found in the human fetus, which has a different amino acid composition, remains to be established. The smaller population, which represents approximately one-third the mass of the larger population in the adult, may represent a degradation product of the larger population, in which the hyaluronic acid-binding region and keratan sulphate-rich region are conserved.


1985 ◽  
Vol 225 (1) ◽  
pp. 95-106 ◽  
Author(s):  
D Heinegård ◽  
J Wieslander ◽  
J Sheehan ◽  
M Paulsson ◽  
Y Sommarin

Intermediary gel immunoelectrophoresis was used to show that purified aggregating cartilage proteoglycans from 2-year-old steers contain two distinct populations of molecules and that only one of these is immunologically related to non-aggregating cartilage proteoglycans. The two types of aggregating proteoglycans were purified by density-gradient centrifugation in 3.5M-CsCl/4M-guanidinium chloride and separated by zonal rate centrifugation in sucrose gradients. The higher-buoyant-density faster-sedimenting proteoglycan represented 43% of the proteoglycans in the extract. It had a weight-average Mr of 3.5 × 10(6), did not contain a well-defined keratan sulphate-rich region, had a quantitatively dominant chondroitin sulphate-rich region and contained 5.9% protein and 23% hexosamine. The lower-buoyant-density, more slowly sedimenting, proteoglycan represented 15% of the proteoglycans in the extract. It had a weight-average Mr of 1.3 × 10(6), contained both the keratan sulphate-rich and the chondroitin sulphate-rich regions and contained 7.3% protein and 23% hexosamine. Each of the proteoglycan preparations showed only one band on agarose/polyacrylamide-gel electrophoresis. The larger proteoglycan had a lower mobility than the smaller. The distribution of chondroitin sulphate chains along the chondroitin sulphate-rich region was similar for the two types of proteoglycans. The somewhat larger chondroitin sulphate chains of the larger proteoglycan could not alone account for the larger size of the proteoglycan. Peptide patterns after trypsin digestion of the proteoglycans showed great similarities, although the presence of a few peptides not shared by both populations indicates that the core proteins are partially different.


1981 ◽  
Vol 195 (3) ◽  
pp. 535-543 ◽  
Author(s):  
A Franzén ◽  
S Inerot ◽  
S O Hejderup ◽  
D Heinegård

Punch biopsies of bovine hip articular cartilage was sectioned according to depth and the proteoglycans were isolated. The mid-sections of the cartilage contained more proteoglycans than did either the superficial or the deepest portions of the cartilage proteoglycans than did either the superficial or the deepest portions of the cartilage. The most superficial 40 micrometer of the cartilage contained relatively more glucosaminoglycans compared with the remainder of the cartilage. The proteoglycans recovered from the surface 200 micrometer layer contained less chondroitin sulphate, were smaller and almost all of these molecules were able to interact with hyaluronic acid to form aggregates. From about 200 micrometer and down to 1040 micrometer from the surface, the proteoglycans became gradually somewhat smaller, probably owing to decreasing size of the chondroitin sulphate-rich region. The proportion of molecules that were able to interact with the hyaluronic acid was about 90% and remained constant with depth. The proteoglycans from the deepest layer near the cartilage-bone junction contained a large proportion of non-aggregating molecules, and the average size of the proteoglycans was somewhat larger. The alterations of proteoglycan structure observed with increasing depth of the articular cartilage beneath the surface layer (to 200 micrometer) are of the same nature as those observed with increasing age in full-thickness articular cartilage. The articular-cartilage proteoglycans were smaller and had much higher keratan sulphate and protein contents that did molecules isolated from bovine nasal or tracheal cartilage.


1994 ◽  
Vol 304 (3) ◽  
pp. 887-894 ◽  
Author(s):  
V Vilim ◽  
A J Fosang

Proteoglycans extracted with 4 M guanidinium chloride from young (mean 20 years) or old (mean 79 years) macroscopically normal human articular cartilage were separated by density gradient centrifugation and Q-Sepharose chromatography and characterized by gradient gel SDS/PAGE and immunodetection before and after removal of glycosaminoglycan chains. The extracts contained two large populations of aggrecan, a population of small N-terminal aggrecan fragments, as well as decorin, biglycan and fibromodulin. The distribution of all these species in density gradient fractions has been determined. The large aggrecan populations comprised four different chondroitin sulphate-bearing core proteins while the population of smaller fragments comprised eight different components. The two smallest fragments (35 and 42 kDa), identified as the first globular domain of aggrecan (N-terminal) (G1) and containing no glycosaminoglycan, were detected only in extracts of old cartilage. A 55 and a 70 kDa fragment of G1 were present in both keratan sulphate-containing and non-keratan sulphate-containing forms. Four other fragments, each containing keratan sulphate epitopes, were identified and these contained either G1 epitopes (one 95 kDa species), or G1 and G2 epitopes (three species). These results have suggested that proteolytic processing at the N-terminus is more extensive than has previously been recognized and raises the possibility that more than one proteinase may be involved in aggrecan degradation in vivo. With the exception of the two smallest G1 fragments, the repertoire of proteoglycan fragments found in young and old human articular cartilage is essentially the same, although the relative abudnance of various species differed. The older tissue contains a larger proportion of C-terminally truncated aggrecan fragments and a significantly decreased content of decorin and biglycan.


1999 ◽  
Vol 340 (2) ◽  
pp. 353-357 ◽  
Author(s):  
Satomi NADANAKA ◽  
Hiroshi KITAGAWA ◽  
Fumitaka GOTO ◽  
Jun-ichi TAMURA ◽  
Klaus W. NEUMANN ◽  
...  

α-Thrombomodulin (α-TM) with a truncated glycosaminoglycan-protein linkage tetrasaccharide, GlcAβ1-3Galβ1-3Galβ1-4Xyl, was tested as an acceptor together with a sugar donor, UDP-N-[3H]acetylgalactosamine, using a cell-free enzyme system prepared from the serum-free culture medium of a human melanoma cell line. The truncated tetrasaccharide on α-TM served as an acceptor, whereas the linkage tetrasaccharide-serine did not. Our characterization of the radioactively labelled product by enzymic digestion revealed that the N-[3H]acetylgalactosamine residue was transferred to α-TM through a β1,4-linkage. The substrate competition experiments with the chondro-hexasaccharide and α-TM reinforced our speculation that a common N-acetylgalactosaminyltransferase catalysed the transfer of N-acetylgalactosamine to both the linkage tetrasaccharide and the longer chondroitin oligosaccharides. Moreover, chondroitin polymerization was demonstrated on the tetrasaccharide of α-TM using both UDP-glucuronic acid and UDP-N-acetylgalactosamine as sugar donors. Much longer chains were synthesized on α-TM than on the linkage penta- and hexa-saccharide-serines. Together, these results indicated that the core protein is required for the transfer of the first N-acetylgalactosamine residue through a β1,4-linkage and also for subsequent efficient chain polymerization reactions, and that the critical determining step for chondroitin sulphate biosynthesis is the transfer of the first N-acetylgalactosamine residue.


1980 ◽  
Vol 185 (3) ◽  
pp. 705-713 ◽  
Author(s):  
D McNicol ◽  
P J Roughley

This study consists of (1) the extraction of proteoglycan from the human meniscus under dissociative conditions, (2) an investigation of the changes that occur in the abundance and structure of this proteoglycan with age and (3) a comparison of these findings with those for human articular-cartilage proteoglycan. Adult meniscus was found to possess proteoglycan molecules of similar size and glycosaminoglycan content to those present in cartilage, although tissue concentrations were considerably lower. In addition, age-related changes, with respect to the occurrence of keratan sulphate and the sulphation of chondroitin sulphate chains, were common to both tissues. The presence of aggregated proteoglycan was demonstrated, although specific interaction with hyaluronic acid was not conclusively shown biochemically. Differences were, however, noted in the structure of the proteoglycan between the two tissues: dermatan sulphate was found in the meniscus proteoglycan preparation and the core proteins exhibited some dissimilarities. A proteoglycan structure of this type would be compatible with its participation in meniscus elasticity, especially as the material is localized in a specific area.


1989 ◽  
Vol 260 (3) ◽  
pp. 849-856 ◽  
Author(s):  
A R Poole ◽  
C Webber ◽  
A Reiner ◽  
P J Roughley

A mouse monoclonal antibody (AN9P1) to keratan sulphate is described. In a competitive-inhibition solution-phase radioimmunoassay employing 125I-labelled intact proteoglycan, it reacts preferentially with keratan sulphate bound to the core protein of adult human articular-cartilage proteoglycan and to a much lesser degree with keratan sulphate purified from this proteoglycan. Proteolytic cleavage of the proteoglycan by pepsin and trypsin has little effect on antibody binding, but treatment with papain decreases binding considerably and more than does treatment with keratanase. An even greater decrease in binding is observed after treatment with alkaline borohydride. A comparison of binding of antibody AN9P1 with that of another previously described monoclonal antibody, 1/20/5-D-4, to keratan sulphate [Caterson, Christner & Baker (1983) J. Biol. Chem. 258, 8848-8854] revealed similar binding characteristics, both showing much diminished binding after papain digestion of proteoglycan and even less with purified skeletal keratan sulphate. Removal of the Fc piece of antibody AN9P1 had no significant effect on the differential binding of divalent F(ab′)2 fragment to proteoglycan, to papain-digested proteoglycan and to keratan sulphate, although there was a small decrease in binding to papain-digested proteoglycan. Conversion of the antibody into univalent Fab fragment with removal of the Fc piece resulted in diminished binding to proteoglycan, compared with that observed with IgG, and in enhanced binding to free keratan sulphate and to papain-digested proteoglycan. These results suggest that close proximity of keratan sulphate chains on the core protein of proteoglycans favours preferential reactivity of bivalent antibody with these species through cross-bridging of chains by antibody. Conversely, much decreased binding to keratan sulphate on proteoglycan core-protein fragments and to free keratan sulphate results from a lack of close proximity of keratan sulphate. By using univalent Fab fragment in these assays these differences in binding are minimized by preventing cross-bridging and thereby enhancing detection of smaller fragments without sacrificing too much sensitivity of detection of larger proteoglycan species. The persistent preferential binding of Fab fragment to proteoglycan is probably in part the result of the increased epitope density in the intact molecule compared with keratan sulphate in a more disperse form.


Sign in / Sign up

Export Citation Format

Share Document