scholarly journals Probing the ionization state of substrate α-d-glucopyranosyl phosphate bound to glycogen phosphorylase b

1995 ◽  
Vol 308 (3) ◽  
pp. 1017-1023 ◽  
Author(s):  
I P Street ◽  
S G Withers

The ionization state of the substrate alpha-D-glucopyranosyl phosphate bound at the active site of glycogen phosphorylase has been probed by a number of techniques. Values of Ki determined for a series of substrate analogue inhibitors in which the phosphate moiety bears differing charges suggest that the enzyme will bind both the monoanionic and dianionic substrates with approximately equal affinity. These results are strongly supported by 31P- and 19F-NMR studies of the bound substrate analogues alpha-D-glucopyranosyl 1-methylenephosphonate and 2-deoxy-2-fluoro-alpha-D-glucopyranosyl phosphate, which also suggest that the substrate can be bound in either ionization state. The pH-dependences of the inhibition constants K1 for these two analogues, which have substantially different phosphate pK2 values (7.3 and 5.9 respectively), are found to be essentially identical with the pH-dependence of K(m) values for the substrate, inhibition decreasing according to an apparent pKa value of 7.2. This again indicates that there is no specificity for monoanion or dianion binding and also reveals that binding is associated with the uptake of a proton. As the bound substrate is not protonated, this proton must be taken up by the proton.

2020 ◽  
Vol 73 (3) ◽  
pp. 112
Author(s):  
Dmitry Shishmarev ◽  
Lucas Quiquempoix ◽  
Clément Q. Fontenelle ◽  
Bruno Linclau ◽  
Philip W. Kuchel

This is the first paper in a sequential pair devoted to the enzyme mutarotase (aldose 1-epimerase; EC 5.1.3.3). Here, the broader context of the physiological role of mutarotase, among those enzymes considered to be part of ‘metabolic structure’, is reviewed. We also summarise the current knowledge about the molecular mechanism and substrate specificity of the enzyme, which is considered in the context of the binding of fluorinated glucose analogues to the enzyme’s active site. This was done as a prelude to our experimental studies of the anomerisation of fluorinated sugars by mutarotase that are described in the following paper.


2020 ◽  
Vol 17 (2) ◽  
pp. 85-89
Author(s):  
Francisco J. Hidalgo ◽  
Nathan A.P. Lorentz ◽  
TinTin B. Luu ◽  
Jonathan D. Tran ◽  
Praveen D. Wickremasinghe ◽  
...  

: Maltodextrins have an increasing number of biomedical and industrial applications due to their attractive physicochemical properties such as biodegradability and biocompatibility. Herein, we describe the development of a synthetic pathway and characterization of thiol-responsive maltodextrin conjugates with dithiomaleimide linkages. 19F NMR studies were also conducted to demonstrate the exchange dynamics of the dithiomaleimide-functionalized sugar end groups.


2003 ◽  
Vol 12 (9) ◽  
pp. 1914-1924 ◽  
Author(s):  
Nikos Pinotsis ◽  
Demetres D. Leonidas ◽  
Evangelia D. Chrysina ◽  
Nikos G. Oikonomakos ◽  
Irene M. Mavridis

1993 ◽  
Vol 290 (1) ◽  
pp. 289-296 ◽  
Author(s):  
G W Mellor ◽  
E W Thomas ◽  
C M Topham ◽  
K Brocklehurst

1. A new thiol-specific reactivity probe 4,4′-dipyrimidyl disulphide [compound (VII), m.p. 110 degrees C, pKa of its monohydronated form 0.91] was synthesized and used to resolve the ambiguity of interpretation of the behaviour of papain (EC 3.4.22.2) in alkaline media known to depend to varying extents on two ionizations with pKa values approx. 8.0-8.5 and > or = 9.5 respectively. 2. A new extensive pH-second-order rate constant (k) data set for the reaction of papain with 2-(acetamido)-ethyl 2′-pyridyl disulphide (IV) demonstrated the existence of a striking rate maximum at pH approx. 4, the independence of k around pH 8 and the increase in k with increase in pH across a pKa value of 10.0, behaviour similar to that of other 2-pyridyl disulphides (R-S-S-2-Py) that lack key substrate-like binding sites in R. 3. Although the simplest interpretation of the pKa value of 10.0 assigns it to the formation of (Cys-25)-S-/(His-159)-Im from the ion-pair state of the papain catalytic site, another interpretation may be conceived in which this pKa value is assigned to another group remote from the catalytic site, the state of ionization of which modulates catalytic-site behaviour. This alternative assignment is shown to require compensating effects in the pH region around 8 such that the formation of (Cys-25)-S-/(His-159)-Im across pKa 8.0-8.5 is without net kinetic effect in the reactions of simple 2-pyridyl disulphides such as compound (IV) and 2,2′-dipyridyl disulphide (II). 4. The lower basicity of compound (VII) relative to that of compound (II) (pKa 2.45) was predicted to diminish or abolish the compensation postulated as a possibility in reactions of 2-pyridyl disulphides because of the decreased effectiveness of reaction via a (His-159)-Im+H-assisted transition state. The characteristics of the pH-dependence of the reaction of papain with compound (VII) which are quite different from those for its reaction with compound (II) support both this prediction and the alternative assignment with a value of 8.3 for the pKa of the formation of (Cys-25)-S-/(His-159)-Im. 5. Evidence that the behaviour of papain towards both substrates and some substrate-derived time-dependent inhibitors is determined not only by the loss of the (Cys-25)-S-/(His-159)-Im+H ion-pair state by dehydronation with pKa 8.3 but also by another ionization of pKa approx. 10.0 is briefly discussed.


Sign in / Sign up

Export Citation Format

Share Document