ionization state
Recently Published Documents


TOTAL DOCUMENTS

297
(FIVE YEARS 46)

H-INDEX

37
(FIVE YEARS 4)

Author(s):  
Michael Stumpf ◽  
Matthias Melchger ◽  
Severin Georg Montag ◽  
Georg Pretzler

Abstract We present an optical setup for well-defined ionization inside a plasma such that precisely controlled spots of high electron density can be generated. We propose to use the setup for Trojan Horse Injection (or Plasma Photocathode Emission) where a collinear laser beam is needed to release electrons inside a plasma wakefield. The reflection-based setup allows a suitable manipulation of the laser near field without disturbing the spectral phase of the laser pulses. A required ionization state and volume can be reached by tuning the beam size, pulse duration and pulse energy. The ionization simulations enable a prediction of the ionization spot and are in good agreement with dedicated experiments which measured the number of electrons created during the laser-gas interaction.


2021 ◽  
Vol 8 ◽  
Author(s):  
Roman Zadorozhnyi ◽  
Sucharita Sarkar ◽  
Caitlin M. Quinn ◽  
Kaneil K. Zadrozny ◽  
Barbie K. Ganser-Pornillos ◽  
...  

Histidine residues play important structural and functional roles in proteins, such as serving as metal-binding ligands, mediating enzyme catalysis, and modulating proton channel activity. Many of these activities are modulated by the ionization state of the imidazole ring. Here we present a fast MAS NMR approach for the determination of protonation and tautomeric states of His at frequencies of 40–62 kHz. The experiments combine 1H detection with selective magnetization inversion techniques and transferred echo double resonance (TEDOR)–based filters, in 2D heteronuclear correlation experiments. We illustrate this approach using microcrystalline assemblies of HIV-1 CACTD-SP1 protein.


2021 ◽  
Vol 923 (1) ◽  
pp. 78
Author(s):  
Amit N. Sawant ◽  
Eric W. Pellegrini ◽  
M. S. Oey ◽  
Jesús López-Hernández ◽  
Genoveva Micheva

Abstract We employ ionization-parameter mapping (IPM) to infer the optical depth of H ii regions in the northern half of M33. We construct [O iii]λ5007/[O ii]λ3727 and [O iii]λ5007/[S ii]λ6724 ratio maps from narrowband images continuum-subtracted in this way, from which we classify the H ii regions by optical depth to ionizing radiation, based on their ionization structure. This method works relatively well in the low-metallicity regime, 12 + log ( O / H ) ≤ 8.4 , where [O iii]λ λ4959, 5007 is strong. However, at higher metallicities, the method breaks down due to the strong dependence of the [O iii]λ λ4959, 5007 emission lines on the nebular temperature. Thus, although O++ may be present in metal-rich H ii regions, these commonly used emission lines do not serve as a useful indicator of its presence, and hence the O ionization state. In addition, IPM as a diagnostic of optical depth is limited by spatial resolution. We also report a region of highly excited [O iii] extending over an area ∼1 kpc across and [O iii]λ5007 luminosity of 4.9 ± 1.5 × 1038 erg s−1, which is several times higher than the ionizing budget of any potential sources in this portion of the galaxy. Finally, this work introduces a new method for continuum subtraction of narrowband images based on the dispersion of pixels around the mode of the diffuse-light flux distribution. In addition to M33, we demonstrate the method on C iii]λ1909 imaging of Haro 11, ESO 338-IG004, and Mrk 71.


2021 ◽  
Vol 104 (4) ◽  
Author(s):  
A. Shvydky ◽  
A. V. Maximov ◽  
V. V. Karasiev ◽  
D. Haberberger ◽  
S. X. Hu ◽  
...  

2021 ◽  
Vol 508 (1) ◽  
pp. 1321-1345
Author(s):  
Vincent Tatischeff ◽  
John C Raymond ◽  
Jean Duprat ◽  
Stefano Gabici ◽  
Sarah Recchia

ABSTRACT Galactic cosmic rays (GCRs) are thought to be accelerated in strong shocks induced by massive star winds and supernova explosions sweeping across the interstellar medium. But the phase of the interstellar medium from which the CRs are extracted has remained elusive until now. Here, we study in detail the GCR source composition deduced from recent measurements by the AMS-02, Voyager 1, and SuperTIGER experiments to obtain information on the composition, ionization state, and dust content of the GCR source reservoirs. We show that the volatile elements of the CR material are mainly accelerated from a plasma of temperature ≳ 2 MK, which is typical of the hot medium found in Galactic superbubbles energized by the activity of massive star winds and supernova explosions. Another GCR component, which is responsible for the overabundance of 22Ne, most likely arises from acceleration of massive star winds in their termination shocks. From the CR-related gamma-ray luminosity of the Milky Way, we estimate that the ion acceleration efficiency in both supernova shocks and wind termination shocks is of the order of 10−5. The GCR source composition also shows evidence for a preferential acceleration of refractory elements contained in interstellar dust. We suggest that the GCR refractories are also produced in superbubbles, from shock acceleration and subsequent sputtering of dust grains continuously incorporated into the hot plasma through thermal evaporation of embedded molecular clouds. Our model explains well the measured abundances of all primary and mostly primary CRs from H to Zr, including the overabundance of 22Ne.


2021 ◽  
Author(s):  
Anaïs Espinosa ◽  
Sylvie Nélieu ◽  
Pascale Lieben ◽  
Charles Skarbek ◽  
Raphaël Labruère ◽  
...  

Abstract Methotrexate is an antineoplastic folate analog of high environmental concern, due to its low biodegradability and toxicological properties. This study focused on its photodegradation under two irradiation conditions, aiming to be representative of environment (300–450 nm) and drinking water treatment (254 nm). The photodegradation experiments were conducted at two pH, to vary the methotrexate ionization state and to produce a large variety of transformation products (TPs). The degradation kinetics determined through LC-UV monitoring were contrasted according to pH and irradiation wavelength. However, the quantum yields were independent of ionization state at 254 nm and the changes in kinetics at higher wavelengths were attributed to a change in the degradation mechanism. The TPs formed during the reactions were identified by UHPLC-MS/MS, using both the positive and negative modes. Among the eleven proposed structures, five were described as methotrexate TPs for the first time. The TPs result from N-demethylation, glutamic acid oxidation and C-N cleavage, all of them leading to further degraded photoproducts presenting modified or lost glutamic acid part. This was made possible thanks to the negative mode, which allowed the exploration of the glutamic acid moiety modifications. Cytotoxicity assessment on A549 cancer cells demonstrated that all photoproducts formed at pH 7 were less toxic than the parent compound.


Author(s):  
Fufei Sun ◽  
Min Xie ◽  
Yu Zhang ◽  
Wentao Song ◽  
Xiaonan Sun ◽  
...  

A new CN covalent bond was formed between acrylonitrile and ammonia in ionization state.


2020 ◽  
Vol 500 (1) ◽  
pp. 643-654
Author(s):  
Arun Kumar Pandey ◽  
Sunil Malik ◽  
T R Seshadri

ABSTRACT We show that the combined effect of cosmic magnetic field and a possible non-standard interaction between baryons and dark matter (DM) has interesting consequences on the thermal Sunyaev−Zel’dovich (tSZ) effect depending on the temperature and the ionization state of the intergalactic medium. The drag force between the baryons and DM due to the relative velocity between them, and their temperature difference results in heat transfer between these two species. At the same time, the ambipolar diffusion and the decaying magnetic turbulence tends to heat up the baryons. This interplay of these two processes give rise to different evolution histories of the thermal and ionization state of the universe and hence influences the cosmic microwave background (CMB) spectrum at small scales through the tSZ effect. In this work, we have computed the evolution of the temperature, ionization fraction, and the y-parameter of the CMB for different strengths of the magnetic field and the interaction cross-section. We note that the y-parameter can be significantly enhanced with the inclusion of magnetic field and baryon–DM interaction as compared to the case when these are absent. The enhancement depends on the strength of the magnetic field.


Sign in / Sign up

Export Citation Format

Share Document