scholarly journals Diacylglycerol generated by exogenous phospholipase C activates the mitogen-activated protein kinase pathway independent of Ras- and phorbol ester-sensitive protein kinase C: dependence on protein kinase C-ζ

1997 ◽  
Vol 323 (3) ◽  
pp. 693-699 ◽  
Author(s):  
Marc C. M. van DIJK ◽  
Francisco J. G. MURIANA ◽  
Paul C. J. van der HOEVEN ◽  
John de WIDT ◽  
Dick SCHAAP ◽  
...  

The role of diacylglycerol (DG) formation from phosphatidylcholine in mitogenic signal transduction is poorly understood. We have generated this lipid at the plasma membrane by treating Rat-1 fibroblasts with bacterial phosphatidylcholine-specific phospholipase C (PC-PLC). This treatment leads to activation of mitogen-activated protein kinase (MAPK). However, unlike platelet-derived growth factor (PDGF) or epidermal growth factor (EGF), PC-PLC fails to activate Ras and to induce DNA synthesis, and activates MAPK only transiently (< 45 min). Down-regulation of protein kinase C (PKC) -α, -Δ and -ε isotypes has little or no effect on MAPK activation by either PC-PLC or growth factors. However, Ro 31-8220, a highly selective inhibitor of all PKC isotypes, including atypical PKC-ζ but not Raf-1, blocks MAPK activation by PDGF and PC-PLC, but not that by EGF, suggesting that atypical PKC mediates the PDGF and PC-PLC signal. In line with this, PKC-ζ is activated by PC-PLC and PDGF, but not by EGF, as shown by a kinase assay in vitro, using biotinylated ε-peptide as a substrate. Furthermore, dominant-negative PKC-ζ inhibits, while (wild-type) PKC-ζ overexpression enhances MAPK activation by PDGF and PC-PLC. The results suggest that DG generated by PC-PLC can activate the MAPK pathway independent of Ras and phorbol-ester-sensitive PKC but, instead, via PKC-ζ.

1997 ◽  
Vol 325 (2) ◽  
pp. 303-307 ◽  
Author(s):  
Marc C. M. VAN DIJK ◽  
Henk HILKMANN ◽  
Wim J. VAN BLITTERSWIJK

The mechanism of Raf-1 activation by platelet-derived growth factor (PDGF) is poorly defined. We previously reported that, in Rat-1 fibroblasts, PDGF activates a phosphatidylcholine-specific phospholipase C (PC-PLC) and that the product, diacylglycerol, somehow activates protein kinase C-ζ (PKC-ζ). Both PC-PLC and PKC-ζ activities were required for PDGF activation of mitogen-activated protein kinase (MAPK). Now we report that MAPK activation by exogenous PC-PLC depends on Raf-1 activation. PKC-ζ co-immunoprecipitates with, phoshorylates and activates Raf-1, suggesting that in the PDGF- and PC-PLC-activated MAPK pathway, PKC-ζ operates in a signalling complex as a direct activator of Raf-1.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2592-2598 ◽  
Author(s):  
Katarzyna J. Procyk ◽  
Maria Rita Rippo ◽  
Roberto Testi ◽  
Fred Hofmann ◽  
Peter J. Parker ◽  
...  

The activation of kinases of the mitogen-activated protein kinase superfamily initiated by lipopolysaccharide (LPS) plays an important role in transducing inflammatory signals. The pathway leading to the induction of stress-activated protein kinases in macrophages stimulated with LPS was investigated. The activation of Jun N-terminal kinases (JNK) by LPS is herbimycin sensitive. Using specific inhibitors, it was shown that the pathway involves the activation of phosphoinositide 3-kinase (PI 3-K). However, in contrast to previous reports, the small GTPases Cdc42 and Rac are not required downstream of PI 3-K for JNK activation. Instead, the phosphoinositides produced by PI 3-K stimulate protein kinase C (PKC) ζ activation through PDK1. In turn, activation of this atypical PKC leads to the stimulation of phosphatidylcholine phospholipase C (PC-PLC) and acidic sphingomyelinase (ASMase). It is therefore proposed that PKCζ regulates the PC-PLC/ASMase pathway, and it is hypothesized that the resultant ceramide accumulation mediates the activation of the SEK/JNK module by LPS.


1995 ◽  
Vol 15 (1) ◽  
pp. 466-475 ◽  
Author(s):  
D Büscher ◽  
R A Hipskind ◽  
S Krautwald ◽  
T Reimann ◽  
M Baccarini

Mitogen-activated protein kinases (MAPKs) are activated upon a variety of extracellular stimuli in different cells. In macrophages, colony-stimulating factor 1 (CSF-1) stimulates proliferation, while bacterial lipopolysaccharide (LPS) inhibits cell growth and causes differentiation and activation. Both CSF-1 and LPS rapidly activate the MAPK network and induce the phosphorylation of two distinct ternary complex factors (TCFs), TCF/Elk and TCF/SAP. CSF-1, but not LPS, stimulated the formation of p21ras. GTP complexes. Expression of a dominant negative ras mutant reduced, but did not abolish, CSF-1-mediated stimulation of MEK and MAPK. In contrast, activation of the MEK kinase Raf-1 was Ras independent. Treatment with the phosphatidylcholine-specific phospholipase C inhibitor D609 suppressed LPS-mediated, but not CSF-1-mediated, activation of Raf-1, MEK, and MAPK. Similarly, down-regulation or inhibition of protein kinase C blocked MEK and MAPK induction by LPS but not that by CSF-1. Phorbol 12-myristate 13-acetate pretreatment led to the sustained activation of the Raf-1 kinase but not that of MEK and MAPK. Thus, activated Raf-1 alone does not support MEK/MAPK activation in macrophages. Phosphorylation of TCF/Elk but not that of TCF/SAP was blocked by all treatments that interfered with MAPK activation, implying that TCF/SAP was targeted by a MAPK-independent pathway. Therefore, CSF-1 and LPS target the MAPK network by two alternative pathways, both of which induce Raf-1 activation. The mitogenic pathway depends on Ras activity, while the differentiation signal relies on protein kinase C and phosphatidylcholine-specific phospholipase C activation.


Blood ◽  
2000 ◽  
Vol 96 (7) ◽  
pp. 2592-2598 ◽  
Author(s):  
Katarzyna J. Procyk ◽  
Maria Rita Rippo ◽  
Roberto Testi ◽  
Fred Hofmann ◽  
Peter J. Parker ◽  
...  

Abstract The activation of kinases of the mitogen-activated protein kinase superfamily initiated by lipopolysaccharide (LPS) plays an important role in transducing inflammatory signals. The pathway leading to the induction of stress-activated protein kinases in macrophages stimulated with LPS was investigated. The activation of Jun N-terminal kinases (JNK) by LPS is herbimycin sensitive. Using specific inhibitors, it was shown that the pathway involves the activation of phosphoinositide 3-kinase (PI 3-K). However, in contrast to previous reports, the small GTPases Cdc42 and Rac are not required downstream of PI 3-K for JNK activation. Instead, the phosphoinositides produced by PI 3-K stimulate protein kinase C (PKC) ζ activation through PDK1. In turn, activation of this atypical PKC leads to the stimulation of phosphatidylcholine phospholipase C (PC-PLC) and acidic sphingomyelinase (ASMase). It is therefore proposed that PKCζ regulates the PC-PLC/ASMase pathway, and it is hypothesized that the resultant ceramide accumulation mediates the activation of the SEK/JNK module by LPS.


2000 ◽  
Vol 347 (3) ◽  
pp. 781-785 ◽  
Author(s):  
Paulus C. J. VAN DER HOEVEN ◽  
José C. M. VAN DER WAL ◽  
Paula RUURS ◽  
Wim J. VAN BLITTERSWIJK

14-3-3 proteins may function as adapter or scaffold proteins in signal transduction pathways. We reported previously that several 14-3-3 isotypes bind to protein kinase C (PKC)-ζ and facilitate coupling of PKC-ζ to Raf-1 [van der Hoeven, van der Wal, Ruurs, van Dijk and van Blitterswijk (2000) Biochem. J. 345, 297-306], an event that boosts the mitogen-activated protein kinase (ERK) pathway in Rat-1 fibroblasts. The present work investigated whether bound 14-3-3 would affect PKC-ζ activity. Using recombinant 14-3-3 proteins and purified PKC-ζ in a convenient, newly developed in vitro kinase assay, we found that 14-3-3 proteins stimulated PKC-ζ activity in a dose-dependent fashion up to approx. 2.5-fold. Activation of PKC-ζ by 14-3-3 isotypes was unrelated to their mutual affinity, estimated by co-immunoprecipitation from COS cell lysates. Accordingly, PKC-ζ with a defective (point-mutated) 14-3-3-binding site, showed the same 14-3-3-stimulated activity as wild-type PKC-ζ. As 14-13-3 proteins are acidic, we tested several other acidic proteins, which turned out to stimulate PKC-ζ activity in a similar fashion, whereas neutral or basic proteins did not. These effects were not restricted to the atypical PKC-ζ, but were also found for classical PKC. Together, the results suggest that the stimulation of PKC activity by 14-3-3 proteins is non-specific and solely due to the acidic nature of these proteins, quite similar to that known for acidic lipids.


1996 ◽  
Vol 318 (1) ◽  
pp. 207-212 ◽  
Author(s):  
Angelika G. BÖRSCH-HAUBOLD ◽  
Ruth M. KRAMER ◽  
Steve P WATSON

Mitogen-activated protein kinases (MAPKs), a family of protein serine/threonine kinases regulating cell growth and differentiation, are activated by a dual-specificity kinase through phosphorylation at threonine and tyrosine. We used a recently described selective inhibitor of the p42/p44mapk-activating enzyme, PD 98059 [2-(2´-amino-3´-methoxyphenyl)-oxanaphthalen-4-one], to investigate the role of the p42/p44mapk pathway in human platelets. PD 98059 inhibited p42/p44mapk activation in thrombin-, collagen- and phorbol ester-stimulated platelets, as determined from in-gel renaturation kinase assays, with an IC50 of approx. 5 µM (thrombin stimulation). It also prevented activation of MAPK kinase, which was measured in whole-cell lysates with glutathione S-transferase/p42mapk fusion protein (GST–MAPK) as substrate. Inhibition of p42/p44mapk did not affect platelet responses to thrombin or collagen such as aggregation, 5-hydroxytryptamine release and protein kinase C activation. In addition, PD 98059 did not interfere with release of arachidonic acid, a response mediated by cytosolic phospholipase A2 (cPLA2), or with cPLA2 phosphorylation. This suggests that platelet cPLA2 is not regulated by p42/p44mapk after stimulation with physiological agonists. In contrast, phorbol ester-induced phosphorylation of cPLA2 and potentiation of arachidonic acid release stimulated by Ca2+ ionophore A23187 were inhibited by PD 98059, indicating that p42/p44mapk phosphorylates cPLA2 after activation of protein kinase C by the non-physiological tumour promoter.


1994 ◽  
Vol 14 (12) ◽  
pp. 8018-8027
Author(s):  
J Xu ◽  
S Rockow ◽  
S Kim ◽  
W Xiong ◽  
W Li

Interferons (IFNs) exert antiproliferative effects on many types of cells. The underlying molecular mechanism, however, is unclear. One possibility is that IFNs block growth factor-induced mitogenic signaling, which involves activation of Ras/Raf-1/MEK/mitogen-activated protein kinase. We have tested this hypothesis by using HER14 cells (NIH 3T3 cell expressing both platelet-derived growth factor [PDGF] and epidermal growth factor [EGF] receptors) as a model system. Our studies showed that IFNs (alpha/beta and gamma) blocked PDGF-and phorbol ester- but not EGF-stimulated DNA synthesis and cell proliferation. While the ligand-stimulated receptor tyrosine phosphorylation and interaction with downstream signaling molecules, such as GRB2, were not affected, IFNs specifically blocked PDGF- and phorbol ester- but not EGF-stimulated activation of Raf-1, mitogen-activated protein kinases, and tyrosine phosphorylation of an unidentified 34-kDa protein. This inhibition could be detected as early as 5 min after IFN treatments and was insensitive to cycloheximide, indicating that de novo protein synthesis is not required. The IFN-induced inhibition acted upstream of Raf-1 kinase and downstream of diacyl glycerol/phorbol ester, suggesting that protein kinase C (PKC) is the potential primary target. Consistently, downregulation of PKC by chronic phorbol myristate acetate treatment or inhibition of PKC by H7 and staurosporine blocked PDGF- and phorbol myristate acetate- but not EGF-induced signaling and DNA synthesis. Moreover, incubating cells with antisense oligodeoxyribonucleotides of PKC delta eliminated production of PKC delta protein and specifically blocked PDGF- but not EGF-stimulated mitogenesis in these cells. Thus, these studies have elucidated a major difference in the early events of EGF-and PDGF-stimulated signal transduction and, more importantly, revealed a novel mechanism by which IFNs may execute their antiproliferative function.


1997 ◽  
Vol 325 (2) ◽  
pp. 383-389 ◽  
Author(s):  
Laurence DAULHAC ◽  
Aline KOWALSKI-CHAUVEL ◽  
Lucien PRADAYROL ◽  
Nicole VAYSSE ◽  
Catherine SEVA

The proliferative effects of gastrin on normal and neoplastic gastro-intestinal tissues have been shown to be mediated by the gastrin/CCKB (G/CCKB) G-protein-coupled receptors. We have recently reported that gastrin stimulates the tyrosine phosphorylation of Shc proteins and their subsequent association with the Grb2/Sos complex, leading to mitogen-activated protein kinase (MAPK) activation, a pathway known to play an important role in cell proliferation. We undertook the present study to characterize the signalling pathways used by this receptor to mediate the activation of the Shc/Grb2 complex. Since G/CCKB receptor occupancy leads to the activation of the phospholipase C (PLC)/protein kinase C (PKC) pathway, we examined whether PKC stimulation and Ca2+ mobilization contribute to the phosphorylation of Shc proteins and their association with Grb2 in response to gastrin. Our results indicate that Shc proteins are tyrosine phosphorylated and associate with Grb2 in response to phorbol esters, suggesting that activation of PKC is a potential signalling pathway leading to activation of the Shc/Grb2 complex. Inhibition of PKC by GF109203X completely blocked the effect of PMA on Shc tyrosine phosphorylation and its subsequent association with Grb2, but had a partial inhibitory effect on the response to gastrin. Depletion of the intracellular Ca2+ pools by treatment with thapsigargin blocked the increase in intracellular free calcium concentration induced by gastrin and diminished the ability of the peptide to stimulate Shc phosphorylation and recruitment of Grb2. In addition, removal of extracellular Ca2+ partially inhibited the effect of gastrin on Shc phosphorylation as well as its association with Grb2, indicating that the effects of gastrin are also mediated by Ca2+-dependent mechanisms. Furthermore, we show that blockage of the two major early signals generated by activation of PLC, which induced the activation of the Shc/Grb2 complex, also blocked gastrin-induced MAPK activation.


Sign in / Sign up

Export Citation Format

Share Document