scholarly journals Novel evidence for an ecto-phospholipid methyltransferase in isolated rat hepatocytes

1998 ◽  
Vol 330 (1) ◽  
pp. 1-4 ◽  
Author(s):  
Françoise BONTEMPS ◽  
Georges VAN DEN BERGHE

Phospholipids of isolated rat hepatocytes were labelled by preincubation with either 2 μM [methyl-14C]S-adenosylmethionine (AdoMet) or 2 μM [methyl-14C]methionine. Subsequent addition of phospholipase C to the suspension removed 95% of the radioactivity from phospholipids methylated by [methyl-14C]AdoMet within a few minutes, but was without effect on phospholipids methylated by [methyl-14C]methionine radioactivity from the latter could, nevertheless, be removed by phospholipase C after permeabilization of the cells with digitonin. The results clearly show that the methyl group of exogenous AdoMet, contrary to that of methionine, is transferred on to phospholipids located on the external face of the plasma membrane. Accordingly, pretreatment of isolated hepatocytes with trypsin prevented the methylation of phospholipids from exogenous AdoMet by 60-80%, whereas it was almost without effect when exogenous methionine was the methyl donor. Our data corroborate previous work [Bontemps and Van den Berghe (1997) Biochem. J. 327, 383-389], which indicated that AdoMet methylates hepatocyte phospholipids without penetrating the cells.

1987 ◽  
Vol 243 (3) ◽  
pp. 655-660 ◽  
Author(s):  
P B Gordon ◽  
H Høyvik ◽  
P O Seglen

Measurements of sugar pinocytosis (fluid-phase endocytosis of radiolabelled sucrose, lactose and raffinose) in freshly isolated rat hepatocytes are disturbed by sugar diffusing into the cells through plasma-membrane blebs. Non-pinocytic entry may be even more pronounced at 0 degrees C, and is a major contributor to ‘background’ radioactivity. By electrodisruption of the plasma membrane, a distinction can be made between pinocytotically sequestered sugar and free sugar that has entered the cytosol by diffusion. Pinocytosis proceeds at a rate of 2%/h (relative to the intracellular fluid volume), whereas the rate of sucrose entry by diffusion is more than twice as high. Three pinocytotic compartments are distinguishable in isolated hepatocytes: (1) a rapidly recycling compartment, which is completely destroyed by electrodisruption, and which may represent pinocytic channels continuous with the plasma membrane; (2) a non-recycling (or very slowly recycling) electrodisruption-resistant compartment, which allows accumulation of the lysosomally hydrolysable sugar lactose, and which therefore must represent non-lysosomal vacuoles (endosomes?); (3) a lysosomal compartment (non-recycling, electrodisruption-resistant), which accumulates raffinose and sucrose, but which hydrolyses lactose. The last two compartments can be partially resolved in metrizamide/sucrose density gradients by the use of different sugar probes.


1991 ◽  
Vol 261 (6) ◽  
pp. R1522-R1526 ◽  
Author(s):  
M. Asensi ◽  
A. Lopez-Rodas ◽  
J. Sastre ◽  
J. Vina ◽  
J. M. Estrela

The aim of this study was to determine the effect of externally added ATP on gluconeogenesis by isolated hepatocytes from starved rats. High concentrations of extracellular ATP inhibited gluconeogenesis from lactate and pyruvate but not from glycerol or fructose. This inhibition was associated with an increase in intracellular adenosine contents. ADP, AMP, or adenosine but not guanosine 5'triphosphate, inosine 5' triphosphate, or adenine also inhibited gluconeogenesis. alpha, beta-Methylene-ATP, a nonmetabolizable structural analogue of ATP, did not affect the rate of gluconeogenesis. Intracellular ATP levels were increased by externally added ATP or adenosine, but ATP-to-ADP ratios in the cytosolic and mitochondrial compartments were diminished. Malate and phosphoenolpyruvate contents were decreased by extracellular ATP or adenosine. Our results show that inhibition of gluconeogenesis by high levels of extracellular ATP may be mediated by adenosine derived from ATP catabolism at the plasma membrane.


1983 ◽  
Vol 210 (1) ◽  
pp. 115-119 ◽  
Author(s):  
G J Barritt ◽  
J A Whiting

Phospholipase C from Clostridium perfringens induced the release of 45Ca2+ from isolated rat hepatocytes incubated at 0.1 mM extracellular Ca2+ with a time course similar to that for the action of phenylephrine. Under the conditions of these experiments, no significant damage to the plasma membrane was detected in the presence of phospholipase C. Little 45Ca2+ release was induced by bee venom phospholipase A2. At 1.3 mM extracellular Ca2+, both phospholipase enzymes stimulated the initial rate of 45Ca2+ exchange. Concentrations of phospholipase C comparable with those that stimulated 45Ca2+ release increased the rates of glucose release and O2 utilization by 70 and 20% respectively. An increase in the rate of O2 utilization but not glucose release was observed after the addition of phospholipase A2 to hepatocytes. The possible role for a cellular phospholipase C in the mechanism by which phenylephrine stimulates glycogenolysis in the liver cell is briefly discussed.


1987 ◽  
Vol 241 (3) ◽  
pp. 729-735 ◽  
Author(s):  
J M Staddon ◽  
R G Hansford

Phenylephrine, vasopressin and glucagon each increased the amount of active (dephospho) pyruvate dehydrogenase (PDHa) in isolated rat hepatocytes. Treatment with 4 beta-phorbol 12-myristate 13-acetate (PMA) opposed the increase in PDHa caused by both phenylephrine and glucagon, but had no effect on the response to vasopressin: PMA alone had no effect on PDHa. As PMA is known to prevent the phenylephrine-induced increase in cytoplasmic free Ca2+ concentration ([Ca2+]c) and to diminish the increase [Ca2+]c caused by glucagon, while having no effect on the ability of vasopressin to increase [Ca2+]c, these data are consistent with the notion that in intact cells an increase in [Ca2+]c results in an increase in the mitochondrial free Ca2+ concentration, which in turn leads to the activation of PDH. In the presence of 2.5 mM-Ca2+, glucagon caused an increase in NAD(P)H fluorescence in hepatocytes. This increase is taken to reflect an enhanced activity of mitochondrial dehydrogenases. PMA alone had no effect on NAD(P)H fluorescence; it did, however, compromise the increase produced by glucagon. When the extracellular free [Ca2+] was decreased to 0.2 microM, glucagon could still increase NAD(P)H fluorescence. Vasopressin also increased fluorescence under these conditions; however, if vasopressin was added after glucagon, no further increase in fluorescence was observed. Treatment of the cells with PMA resulted in a smaller increase in NAD(P)H fluorescence on addition of glucagon: the subsequent addition of vasopressin now caused a further increase in fluorescence. Changes in [Ca2+]c corresponding to the changes in NAD(P)H fluorescence were observed, again supporting the idea that [Ca2+]c indirectly regulates intramitochondrial dehydrogenase activity in intact cells. PMA alone had no effect on pyruvate kinase activity, and the phorbol ester did not prevent the inactivation caused by glucagon. The latter emphasizes the different mechanisms by which the hormone influences mitochondrial and cytoplasmic metabolism.


1989 ◽  
Vol 4 (3) ◽  
pp. 221-227 ◽  
Author(s):  
ANTONIO BENEDETTI ◽  
GIANNA FERRETTI ◽  
GIOVANNA CURATOLA ◽  
EUGENIO BRUNELLI ◽  
ANNE MARIE JÉZÉQUEL ◽  
...  

1997 ◽  
Vol 152 (3) ◽  
pp. 407-412 ◽  
Author(s):  
M Montiel ◽  
M C Caro ◽  
E Jiménez

Angiotensin II (Ang II) provokes rapid internalisation of its receptor from plasma membranes in isolated rat hepatocytes. After 10 min stimulation with Ang II, plasma membrane lost about 60% of its 125I-Ang II-binding capacity. Internalisation was blocked by phenylarsine oxide (PhAsO), whereas okadaic acid, which markedly reduced the sustained phase of calcium mobilization, did not have a preventive effect on Ang II–receptor complex sequestration. These data suggest that Ang II receptor internalisation is probably independent of a phosphorylation/dephosphorylation cycle of critical serine/threonine residues in the receptor molecule. To establish a relationship between sequestration of the Ang II receptor and the physical properties of the Ang II-binding sites, 125I-Ang II–receptor complex profiles were analysed by isoelectric focusing. In plasma membrane preparations two predominant Ang II-binding sites, migrating to pI 6·8 and 6·5 were found. After exposure to Ang II, cells lost 125I-Ang II-binding capacity to the Ang II–receptor complex migrating at pI 6·8 which was prevented in PhAsO-treated cells. Pretreatment of hepatocytes with okadaic acid did not modify Ang II–receptor complex profiles, indicating that the binding sites corresponding to pI 6·5 and pI 6·8 do not represent a phosphorylated and/or non-phosphorylated form of the Ang II receptor. The results show that the Ang II–receptor complex isoform at pI 6·8 represents a functional form of the type-1 Ang II receptor. Further studies are necessary to identify the Ang II-related nature of the binding sites corresponding to pI 6·5. Journal of Endocrinology (1997) 152, 407–412


1990 ◽  
Vol 68 (6) ◽  
pp. 657-662 ◽  
Author(s):  
Louise Gariepy ◽  
Daphna Fenyves ◽  
Jean-Luc Petit ◽  
Ginette Raymond ◽  
Jean-Pierre Villeneuve

Several recent reports have shown that the hepatic uptake and subsequent elimination of some substrates is faster in the presence of albumin than in its absence, as if some of the substrate bound to albumin was also available for uptake. In the present study, we examined the effect of albumin on the clearance of propranolol by isolated rat hepatocyte suspensions. The clearance of total drug decreased progressively as albumin concentration increased. There was also a progressive decrease in the free fraction of propranolol and the net result was an increase in the clearance of unbound drug (+50% at 40 g/L albumin). This increase was not due to an oncotic pressure effect of albumin, nor to the presence of fatty acids bound to albumin. The clearance of propranolol by isolated hepatocytes from cirrhotic rats was decreased compared with controls (−50%), and albumin also increased propranolol free clearance, albeit to a lesser extent than in control animals. Our results indicate that albumin facilitates the elimination of propranolol by hepatocytes, possibly because of surface-mediated catalysis of the albumin–propranolol complexes.Key words: propranolol clearance, albumin, isolated rat hepatocytes, cirrhosis.


Sign in / Sign up

Export Citation Format

Share Document