scholarly journals Iron loading of isolated rat hepatocytes inhibits asialoglycoprotein receptor dynamics and induces formation of rat hepatic leptin-1 (RHL-1) oligomers

1998 ◽  
Vol 331 (3) ◽  
pp. 719-726 ◽  
Author(s):  
Douglas D. McABEE ◽  
Yuan Yuan LING ◽  
Charles STICH

The major subunit [rat hepatic lectin-1 (RHL-1)] of the asialoglycoprotein (ASGP) receptor mediates endocytosis of the iron-binding protein lactoferrin (Lf) by isolated rat hepatocytes, yet iron loading of cultured adult rat hepatocytes increases the binding and endocytosis of Lf while greatly inhibiting the uptake of desialylated ligand. In the present study, we determined whether the iron-induced Lf-binding site is RHL-1 and examined the nature of the iron-induced block in ASGP receptor endocytic function. Isolated rat hepatocytes increased their non-haem iron content from 70 to 470 p.p.b. following incubation with ferric ammonium citrate (⩽ 100 µg/ml). These conditions blocked internalization of 125I-asialo-orosomucoid (ASOR) by ≈ 90% but increased 125I-Lf endocytosis by 40%. ASOR and anti-RHL-1 sera blocked the binding and endocytosis of 125I-Lf on control cells but not on iron-loaded cells, indicating that the iron-induced Lf-binding site on hepatocytes is not RHL-1. Iron-loading of hepatocytes in the presence or absence of excess ASOR did not significantly alter the number of active ASGP receptors on the cell surface. In contrast, iron-loading decreased the number of active intracellular receptors by 40% and blocked the uptake of 125I-ASOR prebound to the cells by ≈ 80%. Under these conditions, we found an iron-dependent evolution of 88 and 140 kDa RHL-1-containing, β-mercaptoethanol-sensitive multimers that constituted up to 34 and 23%, respectively, of total immunodetectable RHL-1. We propose that iron-induced formation of cystinyl-linked RHL-1-containing multimers inhibits ASGP receptor movement between cell surface and interior and disrupts acylation of intracellular receptors.

Biochemistry ◽  
1990 ◽  
Vol 29 (45) ◽  
pp. 10425-10432 ◽  
Author(s):  
Stephen J. Frost ◽  
Rampyari H. Raja ◽  
Paul H. Weigel

1996 ◽  
Vol 228 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Julia Lange ◽  
Karsten Schlieps ◽  
Klaus Lange ◽  
Ursula Brandt ◽  
Elisabeth Knoll-Köhler

1991 ◽  
Vol 260 (3) ◽  
pp. C457-C467 ◽  
Author(s):  
S. Yanai ◽  
Y. Sugiyama ◽  
D. C. Kim ◽  
T. Iga ◽  
T. Fuwa ◽  
...  

The interaction of epidermal growth factor (EGF) with cell surface receptors and their subsequent endocytosis in isolated rat hepatocytes were analyzed by measuring changes in the concentrations of cell surface-bound, internalized, and degraded EGF. The kinetic model proposed by Wiley and Cunningham (Cell 25: 433-440, 1981) and Gex-Fabry and Delisi [Am. J. Physiol. 247 (Regulatory Integrative Comp. Physiol. 16): R768-R779, 1984] was basically utilized for the model analysis. The following kinetic parameters were obtained: association and dissociation rate constants for EGF-receptor interaction, internalization rate constant for EGF-receptor complex (kappa e), internalization rate constant for free receptor (kappa t), sequestration rate constant (kappa s) of the complex from shallow (exchangeable) to deep (nonexchangeable) membraneous compartment, intracellular degradation rate constant and initial cell-surface receptor density. The kappa s value, which was obtained by analyzing the time profiles of EGF association with cells, was approximately 5-10 times larger than the kappa e value determined by directly measuring internalized EGF with the acid-washing technique. This suggests the necessary presence of deep (nonexchanging) compartment of the complex in the plasma membrane. The calculated kappa e value is at least several times larger than the kappa t value, yielding the kinetic basis for the occurrence of receptor downregulation induced by excess EGF. We conclude that, in the overall receptor-mediated processing of EGF after bound to the cell surface receptors, the dissociation process is rapid [half-time (t1/2) less than 1 min], the degradation process is much slower (t1/2 approximately equal to 3 h), and the receptor internalization process is intermediate (t1/2 approximately equal to 6-7 min). In addition, two pools for EGF-receptor complex in the plasma membrane seem to be present, although their identification cannot be made.


1984 ◽  
Vol 218 (2) ◽  
pp. 307-312 ◽  
Author(s):  
B Draznin ◽  
M Trowbridge ◽  
L Ferguson

We studied internalization of 125I-labelled insulin in isolated rat hepatocytes. Using the acidification technique, we were able to dissociate the ligand from its cell-surface receptors, and thus to separate internalized from surface-bound insulin. Because during the first 5 min of incubation of 125I-labelled insulin with freshly isolated hepatocytes there is no loss of internalized label, the ratio of the amount of internalized ligand to the amount of cell-surface-bound ligand may serve as an index of insulin internalization. Within the first 10 min of insulin's interaction with hepatocytes, the plot of the above ratio as a function of time yields a straight line. The slope of this line is referred to as the endocytic rate constant (Ke) for insulin and denotes the probability with which the insulin-receptor complex is internalized in 1 min. At the insulin concentration of 0.295 ng/ml, the Ke is 0.049 min-1. It is independent of insulin concentration until the latter exceeds 1 ng/ml. At the insulin concentration of 3.2 ng/ml, the Ke accelerates to 0.131 min-1. With the Ke being the probability of insulin-receptor-complex internalization, 4.9% of occupied insulin receptors will be internalized in 1 min at an insulin concentration of 0.295 ng/ml, and 13.1% of occupied insulin receptors will be internalized in 1 min at 3.2 ng/ml. When the insulin concentration decreases from 3.2 to 0.3 ng/ml, the Ke decreases accordingly. The half-time of occupied receptor internalization is 15.4 min at the lower insulin concentration and 5.3 min at the higher insulin concentration.


1982 ◽  
Vol 92 (3) ◽  
pp. 634-647 ◽  
Author(s):  
PL Zeitlin ◽  
AL Hubbard

A combination of biochemistry and morphology was used to demonstrate that more than 95 percent of the isolated rat hepatocytes prepared by collagenase dissociation of rat livers retained the pathway for receptor-mediated endocytosis of asialoglycoproteins (ASGPs). Maximal specific binding of (125)I-asialoorosomucoid ((125)I-ASOR) to dissociated hepatocytes at 5 degrees C (at which temperature no internalization occurred) averaged 100,000-400,000 molecules per cell. Binding, uptake, and degredation of (125)I- ASOR at 37 degrees C occurred at a rate of 1 x 10(6) molecules per cell over 2 h. Light and electron microscopic autoradiography (LM- and EM-ARG) of (125)I-ASOR were used to visualize the surface binding sites at 5 degrees C and the intracellular pathway at 37 degrees C. In the EM-ARG experiments, ARG grains corresponding to (125)I-ASOR were distributed randomly over the cell surface at 5 degrees C but over time at 37 degrees C were concentrated in the lysosome region. Cytochemical detection of an ASOR-horseradish peroxidase conjugate (ASOR-HRP) at the ultrastructural level revealed that at 5 degrees C this specific ASGP tracer was concentrated in pits at the cell surface as well as diffusely distributed along the rest of the plasma membrane. Such a result indicates that redistribution of ASGP surface receptors had occurred. Because the number of surface binding sites of (125)I-ASOR varied among cell preparations, the effect of collagenase on (125)I-ASOR binding was examined. When collagenase-dissociated hepatocytes were re-exposed to collagenase at 37 degrees C, 10-50 percent of control binding was observed. However, by measuring the extent of (125)I-ASOR binding at 5 degrees C in the same cell population before and after collagenase dissociation, little reduction in the number of ASGP surface receptors was found. Therefore, the possibility that the time and temperature of the cell isolations allowed recovery of cell surface receptors following collagenase exposure was tested. Freshly isolated cells, dissociated cells that were re-exposed to collagenase, and perfused livers exposed to collagenase without a Ca(++)-free pre-perfusion, were found to bind 110-240 percent more(125)I-ASOR after 1 h at 37 degrees C that they did at 0 time. This recovery of surface ASGP binding activity occurred in the absence of significant protein synthesis (i.e., basal medium or 1 mM cycloheximide). Suspensions of isolated, unpolarized hepatocytes were placed in monolayer culture for 24 h and confluent cells were demonstrated to reestablish morphologically distinct plasma membrane regions analogous to bile canalicular, lateral, and sinusoidal surfaces in vivo. More than 95 percent of these cells maintained the capacity to bind, internalize, and degrade (125)I-ASOR at levels comparable to those of the freshly isolated population. ASOR-HRP (at 5 degrees C) was specifically bound to all plasma membrane surfaces of repolarized hepatocytes (cultured for 24 h) except those lining bile canalicular-like spaces. Thus, both isolated, unpolarized hepatocytes and cells cultured under conditions that promote morphological reestablishment of polarity maintain the pathway for receptor- mediated endocytosis of ASGPs.


Sign in / Sign up

Export Citation Format

Share Document