scholarly journals Purification and characterization of cytosolic pyruvate kinase from banana fruit

2000 ◽  
Vol 352 (3) ◽  
pp. 875-882 ◽  
Author(s):  
William L. TURNER ◽  
William C. PLAXTON

Cytosolic pyruvate kinase (PKc) from ripened banana (Musa cavendishii L.) fruits has been purified 543-fold to electrophoretic homogeneity and a final specific activity of 59.7µmol of pyruvate produced/min per mg of protein. SDS/PAGE and gel-filtration FPLC of the final preparation indicated that this enzyme exists as a 240kDa homotetramer composed of subunits of 57kDa. Although the enzyme displayed a pH optimum of 6.9, optimal efficiency in substrate utilization [in terms of Vmax/Km for phosphoenolpyruvate (PEP) or ADP] was equivalent at pH6.9 and 7.5. PKc activity was absolutely dependent upon the presence of a bivalent and a univalent cation, with Mg2+ and K+ respectively fulfilling this requirement. Hyperbolic saturation kinetics were observed for the binding of PEP, ADP, Mg2+ and K+ (Km values of 0.098, 0.12, 0.27 and 0.91mM respectively). Although the enzyme utilized UDP, IDP, GDP and CDP as alternative nucleotides, ADP was the preferred substrate. L-Glutamate and MgATP were the most effective inhibitors, whereas L-aspartate functioned as an activator by reversing the inhibition of PKc by L-glutamate. The allosteric features of banana PKc are compared with those of banana PEP carboxylase [Law and Plaxton (1995) Biochem. J. 307, 807Ő816]. A model is presented which highlights the roles of cytosolic pH, MgATP, L-glutamate and L-aspartate in the co-ordinate control of the PEP branchpoint in ripening bananas.

2017 ◽  
Vol 18 (2) ◽  
pp. 1-10 ◽  
Author(s):  
Dzun Noraini Jimat ◽  
Intan Baizura Firda Mohamed ◽  
Azlin Suhaida Azmi ◽  
Parveen Jamal

A newly bacterial producing L-asparaginase was successful isolated from Sungai Klah Hot Spring, Perak, Malaysia and identified as Bacillus sp. It was the best L-asparaginase producer as compared to other isolates. Production of L-asparaginase from the microbial strain was carried out under liquid fermentation. The crude enzyme was then centrifuged and precipitated with ammonium sulfate before further purified with chromatographic method. The ion exchange chromatography HiTrap DEAE-Sepharose Fast Flow column followed by separation on Superose 12 gel filtration were used to obtain pure enzyme. The purified enzyme showed 10.11 U/mg of specific activity, 50.07% yield with 2.21 fold purification. The purified enzyme was found to be dimer in form, with a molecular weight of 65 kDa as estimated by SDS-PAGE. The maximum activity of the purified L-asparaginase was observed at pH 9 and temperature of 60°C.


1996 ◽  
Vol 319 (3) ◽  
pp. 977-983 ◽  
Author(s):  
Jeong Heon KO ◽  
Cheorl Ho KIM ◽  
Dae-Sil LEE ◽  
Yu Sam KIM

An extremely thermostable ADP-glucose pyrophosphorylase (AGPase) has been purified from Thermus caldophilus GK-24 to homogeneity by chromatographic methods, including gel filtration and ion-exchange and affinity chromatography. The specific activity of the enzyme was enriched 134.8-fold with a recovery of 10.5%. The purified enzyme was a single band by SDS/PAGE with a molecular mass of 52 kDa. The homotetrameric structure of the native enzyme was determined by gel filtration analysis, which showed a molecular mass of 230 kDa on a Superose-12 column, indicating that the structure of the enzyme is different from the heterotetrameric structures of higher-plant AGPases. The enzyme was most active at pH 6.0. The activity was maximal at 73–78 °C and its half-life was 30 min at 95 °C. Kinetic and regulatory properties were characterized. It was found that AGPase activity could be stimulated by a number of glycolytic intermediates. Fructose 6-phosphate, fructose 1,6-bisphosphate, phenylglyoxal and glucose 6-phosphate were effective activators, of which fructose 1,6-bisphosphate was the most effective. The enzyme was inhibited by phosphate, AMP or ADP. ATP and glucose 1-phosphate gave hyperbolic-shaped rate-concentration curves in the presence or absence of activator. A remarkable aspect of the amino acid composition was the existence of the hydrophobic and Ala+Gly residues. The N-terminal and internal peptide sequences were determined and compared with known sequences of various sources. It was apparently similar to those of AGPases from other bacterial and plant sources, suggesting that the enzymes are structurally related.


2005 ◽  
Vol 37 (6) ◽  
pp. 363-370 ◽  
Author(s):  
Ye-Yun Li ◽  
Chang-Jun Jiang ◽  
Xiao-Chun Wan ◽  
Zheng-Zhu Zhang ◽  
Da-Xiang Li

Abstractβ-Glucosidases are important in the formation of floral tea aroma and the development of resistance to pathogens and herbivores in tea plants. A novel β-glucosidase was purified 117-fold to homogeneity, with a yield of 1.26%, from tea leaves by chilled acetone and ammonium sulfate precipitation, ion exchange chromatography (CM-Sephadex C-50) and fast protein liquid chromatography (FPLC; Superdex 75, Resource S). The enzyme was a monomeric protein with specific activity of 2.57 U/mg. The molecular mass of the enzyme was estimated to be about 41 kDa and 34 kDa by SDS-PAGE and FPLC gel filtration on Superdex 200, respectively. The enzyme showed optimum activity at 50 °C and was stable at temperatures lower than 40 °C. It was active between pH 4.0 and pH 7.0, with an optimum activity at pH 5.5, and was fairly stable from pH 4.5 to pH 8.0. The enzyme showed maximum activity towards pNPG, low activity towards pNP-Galacto, and no activity towards pNP-Xylo.


1995 ◽  
Vol 308 (3) ◽  
pp. 733-741 ◽  
Author(s):  
S M Pitson ◽  
R J Seviour ◽  
B M McDougall ◽  
J R Woodward ◽  
B A Stone

Three (1-->3)-beta-D-glucanases (GNs) were isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. Homogeneity of the purified proteins was confirmed by SDS/PAGE, isoelectric focusing and N-terminal amino acid sequencing. All three GNs (GN I, II and III) are non-glycosylated, monomeric proteins with apparent molecular masses, estimated by SDS/PAGE, of 81, 85 and 89 kDa respectively. pI values for the three enzymes are 5.3, 5.1, and 4.4 respectively. The pH optimum for GN I is 6.5, and 5.0 for GN II and III. All three purified enzymes displayed stability over the pH range 4.5-10.0. Optimum activities for GN I, II and III were recorded at 65, 55 and 60 degrees C respectively, with both GN II and III having short-term stability up to 50 degrees C and GN I up to 55 degrees C. The purified GNs have high specificity for (1-->3)-beta-linkages and hydrolysed a range of (1-->3)-beta- and (1-->3)(1-->6)-beta-D-glucans, with laminarin from Laminaria digitata being the most rapidly hydrolysed substrate of those tested. K(m) values for GN I, II, and III against L. digitata laminarin were 0.1, 0.23 and 0.22 mg/ml respectively. D-Glucono-1,5-lactone does not inhibit any of the three GNs, some metals ions are mild inhibitors, and N-bromosuccinimide and KMnO4 are strong inhibitors. All three GNs acted in an exo-hydrolytic manner, determined by the release of alpha-glucose as the initial and major product of hydrolysis of (1-->3)-beta-D-glucans, and confirmed by viscometric analysis and the inability to cleave periodate-oxidized laminarin, and may be classified as (1-->3)-beta-D-glucan glucohydrolases (EC 3.2.1.58).


1996 ◽  
Vol 316 (3) ◽  
pp. 841-846 ◽  
Author(s):  
Stuart M. PITSON ◽  
Robert J. SEVIOUR ◽  
Barbara M. McDOUGALL ◽  
Bruce A. STONE ◽  
Maruse SADEK

An endo-(1 → 6)-β-glucanase has been isolated from the culture filtrates of the filamentous fungus Acremonium persicinum and purified by (NH4)2SO4 precipitation followed by anion-exchange and gel-filtration chromatography. SDS/PAGE of the purified enzyme gave a single band with an apparent molecular mass of 42.7 kDa. The enzyme is a non-glycosylated, monomeric protein with a pI of 4.9 and pH optimum of 5.0. It hydrolysed (1 → 6)-β-glucans (pustulan and lutean), initially yielding a series of (1 → 6)-β-linked oligoglucosides, consistent with endo-hydrolytic action. Final hydrolysis products from these substrates were gentiobiose and gentiotriose, with all products released as β-anomers, indicating that the enzyme acts with retention of configuration. The purified enzyme also hydrolysed Eisenia bicyclis laminarin, liberating glucose, gentiobiose, and a range of larger oligoglucosides, through the apparent hydrolysis of (1 → 6)-β- and some (1 → 3)-β-linkages in this substrate. Km values for pustulan, lutean and laminarin were 1.28, 1.38, and 1.67 mg/ml respectively. The enzyme was inhibited by N-acetylimidazole, N-bromosuccinimide, dicyclohexylcarbodi-imide, Woodward's Regent K, 2-hydroxy-5-nitrobenzyl bromide, KMnO4 and some metal ions, whereas D-glucono-1,5-lactone and EDTA had no effect.


1993 ◽  
Vol 293 (1) ◽  
pp. 283-288 ◽  
Author(s):  
L J Klimczak ◽  
A R Cashmore

Casein kinase I from broccoli was purified approximately 65,000-fold by chromatography on phosphocellulose, phenyl-Sepharose, CM-Sephacel, and affinity chromatography on N-(2-aminoethyl)-5-chloroisoquinolone-8-sulphonamide (CKI-7)-Sepharose. The catalytic subunit of casein kinase I was identified as a 36-38 kDa polypeptide doublet by using the technique of activity gel assay after SDS/PAGE with casein as a gel-incorporated substrate. A silver-stained polypeptide doublet of the same molecular mass constituted at least 95% of the protein in the final preparation, corresponding to a specific activity of approximately 1800 nmol/min per mg of protein. The enzyme was found to be a monomer by gel filtration and glycerol gradient sedimentation; the native molecular mass was calculated to be 34.2 kDa. These characteristics, as well as other essential features of plant casein kinase I activity, such as substrate specificity and sensitivity to inhibitors, were found to be similar to those established for animal casein kinase I. Broccoli casein kinase I showed weak immunological cross-reactivity with antibodies raised against bovine casein kinase I.


1993 ◽  
Vol 293 (2) ◽  
pp. 487-493 ◽  
Author(s):  
N Yarlett ◽  
B Goldberg ◽  
M A Moharrami ◽  
C J Bacchi

Ornithine decarboxylase (ODC), the lead enzyme in polyamine biosynthesis, was partially purified from Trichomonas vaginalis and its kinetic properties were studied. The enzyme appears to be of special significance in this anaerobic parasite, since the arginine dihydrolase pathway generates ATP as well as putrescine from arginine. ODC from T. vaginalis had a broad substrate specificity, decarboxylating ornithine (100%), lysine (1.0%) and arginine (0.1%). The enzyme had a pH optimum of 6.5, a temperature optimum of 37 degrees C and was pyridoxal 5′-phosphate-dependent. Attempts to separate ornithine- from lysine-decarboxylating activity by thermal-stability and pH-optima curves were not successful. Although Km values for ornithine and lysine were 109 and 91 microM respectively, and the Vmax values for these substrates were 1282 and 13 nmol/min per mg of protein respectively, the most important intracellular substrate is ornithine, since intracellular ornithine levels are 3.5 times those of lysine and extracellular putrescine levels are 7.5 times those of cadaverine. Ornithine was also an effective inhibitor of lysine-decarboxylating activity (Ki 150 microM), whereas lysine was relatively ineffective as inhibitor of ornithine-decarboxylating activity (Ki 14.5 mM). Crude ODC activity was localized (86%) in the 43,000 g supernatant and 3303-fold purification was obtained by (NH4)2SO4 salting and DEAE-Sephacel, agarose-gel and hydroxyapatite chromatography steps. The enzyme bound difluoro[3H]methylornithine ([3H]DFMO) with a ratio of drug bound to activity of 2500 fmol/unit, where 1 unit corresponds to 1 nmol of CO2 released from ornithine/min. The enzyme had a native M(r) of 210000 (gel filtration), with a subunit M(r) of 55,000 (by SDS/PAGE), suggesting that the trichomonad enzyme is a tetramer. From the subunit M(r) and binding ratio of DFMO, there is about 137 ng of ODC per mg of T. vaginalis protein (0.013%). The significant amount of ODC protein present supports the view that putrescine synthesis in T. vaginalis plays an important role in the metabolism of the parasite.


1996 ◽  
Vol 315 (1) ◽  
pp. 71-75 ◽  
Author(s):  
Lyudmila I. ASHMARINA ◽  
Marie-France ROBERT ◽  
Marc-André ELSLIGER ◽  
Grant A. MITCHELL

We previously showed that human liver hydroxymethylglutaryl-CoA (HMG-CoA) lyase (HL; EC 4.1.3.4) is found in both mitochondria and peroxisomes. HL contains a 27-residue N-terminal mitochondrial targeting sequence which is cleaved on mitochondrial entry, as well as a C-terminal Cys-Lys-Leu peroxisomal targeting motif. Because peroxisomal HL has a greater molecular mass and more basic pI value than mitochondrial HL, we predicted that peroxisomal HL retains the mitochondrial leader. To test this hypothesis, we expressed both the precursor (pHL) and mature (mHL) peptides in Escherichia coli and studied their properties. pHL purified by ion-exchange and hydrophobic chromatography had a pI of 7.6 on FPLC chromatofocusing and a molecular mass of 34.5 kDa on SDS/PAGE, similar to our findings for peroxisomal HL. For purified mHL, pI (6.2) and molecular mass (32 kDa) values resemble those of mitochondrial HL. Purified pHL is similar to mHL in Km for HMG-CoA (44.8 μM), kcat (6.3 min-1) and pH optimum (9.0–9.5). However, the quaternary structures of pHL and mHL differ. On Superose 12 FPLC gel filtration and also on ultrafiltration, both in the presence and in the absence of HMG-CoA, pHL behaves as a monomer whereas mHL migrates as a dimer. We conclude that the HL precursor is probably identical to peroxisomal HL, that its catalytic properties resemble those of mature mitochondrial HL, and that the mitochondrial leader peptide prevents dimerization of pHL.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Imran Ali ◽  
Ali Akbar ◽  
Mohammad Anwar ◽  
Sehanat Prasongsuk ◽  
Pongtharin Lotrakul ◽  
...  

An extracellularα-amylase from the obligate halophilicAspergillus penicillioidesTISTR3639 strain was produced and enriched to apparent homogeneity by ammonium sulfate precipitation and Sephadex G100 gel filtration column chromatography. The mass of the purified amylase was estimated to be 42 kDa by SDS-PAGE. With soluble starch as the substrate it had a specific activity of 118.42 U·mg−1andVmax⁡andKmvalues of 1.05 µmol·min−1·mg−1and 5.41 mg·mL−1, respectively. The enzyme was found to have certain polyextremophilic characteristics, with an optimum activity at pH 9, 80°C, and 300 g·L−1NaCl. The addition of CaCl2at 2 mM was found to slightly enhance the amylase activity, while ZnCl2, FeCl2, or EDTA at 2 mM was strongly or moderately inhibitory, respectively, suggesting the requirement for a (non-Fe2+or Zn2+) divalent cation. The enzyme retained more than 80% of its activity when incubated with three different laundry detergents and had a better performance compared to a commercial amylase and three detergents in the presence of increasing NaCl concentrations up to 300 g·L−1. Accordingly, it has a good potential for use as anα-amylase in a low water activity (high salt concentration) and at high pH and temperatures.


2017 ◽  
Vol 37 (1) ◽  
pp. 31
Author(s):  
Fitria Fitria ◽  
Nanik Rahmani ◽  
Sri Pujiyanto ◽  
Budi Raharjo ◽  
Yopi Yopi

Enzyme xylanase (EC 3.2.1.8) is widely used in various industrial  fields for the hydrolysis of xylan (hemicellulose) into xylooligosaccharide and xylose. The aims of this study were to  conduct partial purification and characterization of xylanase from marine Bacillus safencis strain LBF P20 and to obtain the  xylooligosaccharide types from xylan hydrolysis by this enzyme.  Based on this research, the optimum time for enzyme production  occurred at 96 hours with the enzyme activity of 6.275 U/mL and  enzyme specific activity of 5.093 U/mg. The specific activities were  obtained from precipitation by amicon® ultra-15 centrifugal filter devices, gel filtration chromatography and anion exchange chromatography that were increased by 15.07, 34.7, and 96.0  U/mg. The results showed that the highest activity at pH 7, temperature of 60 °C, and stable at 4 °C. Type of  xylooligosaccharide produced by this study were xylohexoses, xylotriose, and xylobiose. SDS-PAGE analysis and zimogram  showed that the molecular weight of xylanase protein were about  25 kDa. ABSTRAKEnzim xilanase (EC 3.2.1.8) digunakan dalam hidrolisis xilan  (hemiselulosa) menjadi xilooligosakarida dan xilosa. Penelitian  ini bertujuan untuk melakukan purifikasi parsial dan karakterisasi xilanase dari bakteri laut Bacillus safencis strain LBF P20 serta uji  hidrolisis untuk mengetahui jenis xilooligosakarida yang  dihasilkan oleh enzim tersebut. Berdasarkan hasil penelitian, waktu optimum untuk produksi enzim terjadi pada jam ke 96  dengan aktivitas enzim sebesar 6,275 U/mL dan aktivitas spesifik enzim sebesar 5,093 (U/mg). Aktivitas spesifik enzim hasil  pemekatan dengan amicon® ultra-15 centrifugal filter devices,  kromatografi filtrasi gel dan kromatografi penukar anion  mengalami peningkatan berturut-turut sebesar 15,1; 34,7 dan96,0 U/mg. Hasil karakterisasi menunjukkan aktivitas  tertinggi pada pH 7, suhu 60 °C dan stabil pada suhu 4 °C. Analisis SDS-PAGE dan zimogram menunjukkan berat molekul protein xilanase berkisar 25 kDa. Jenis gula reduksi yang  dihasilkan yaitu xiloheksosa, xilotriosa, dan xilobiosa.


Sign in / Sign up

Export Citation Format

Share Document