Functional and structural roles of the glutathione-binding residues in maize (Zea mays) glutathione S-transferase I

2001 ◽  
Vol 358 (1) ◽  
pp. 101-110 ◽  
Author(s):  
Nikolaos E. LABROU ◽  
Luciane V. MELLO ◽  
Yannis D. CLONIS

The isoenzyme glutathione S-transferase (GST) I from maize (Zea mays) was cloned and expressed in Escherichia coli, and its catalytic mechanism was investigated by site-directed mutagenesis and dynamic studies. The results showed that the enzyme promotes proton dissociation from the GSH thiol and creates a thiolate anion with high nucleophilic reactivity by lowering the pKa of the thiol from 8.7 to 6.2. Steady-state kinetics fit well to a rapid equilibrium, random sequential Bi Bi mechanism, with intrasubunit modulation between the GSH binding site (G-site) and the electrophile binding site (H-site). The rate-limiting step of the reaction is viscosity-dependent, and thermodynamic data suggest that product release is rate-limiting. Five residues of GST I (Ser11, His40, Lys41, Gln53 and Ser67), which are located in the G-site, were individually replaced with alanine and their structural and functional roles in the 1-chloro-2,4-dinitrobenzene (CDNB) conjugation reaction were investigated. On the basis of steady-state kinetics, difference spectroscopy and limited proteolysis studies it is concluded that these residues: (1) contribute to the affinity of the G-site for GSH, as they are involved in side-chain interaction with GSH; (2) influence GSH thiol ionization, and thus its reactivity; (3) participate in kcat regulation by affecting the rate-limiting step of the reaction; and (4) in the cases of His40, Lys41 and Gln53 play an important role in the structural integrity of, and probably in the flexibility of, the highly mobile short 310-helical segment of α-helix 2 (residues 35–46), as shown by limited proteolysis experiments. These structural perturbations are probably transmitted to the H-site through changes in Phe35 conformation. This accounts for the modulation of Kcdnbm by His40, Lys41 and Gln53, and also for the intrasubunit communication between the G- and H-sites. Computer simulations using CONCOORD were applied to maize GST I monomer and dimer structures, each with bound lactoylglutathione, and the results were analysed by the essential dynamics technique. Differences in dynamics were found between the monomer and the dimer simulations showing the importance of using the whole structure in dynamic analysis. The results obtained confirm that the short 310-helical segment of α-helix 2 (residues 35–46) undergoes the most significant structural rearrangements. These rearrangements are discussed in terms of enzyme catalytic mechanism.

1990 ◽  
Vol 265 (3) ◽  
pp. 899-902 ◽  
Author(s):  
T R Hawkes ◽  
T Lewis ◽  
J R Coggins ◽  
D M Mousdale ◽  
D J Lowe ◽  
...  

The pre-steady-state kinetics of phosphate formation from 5-enolpyruvylshikimate 3-phosphate catalysed by Escherichia coli chorismate synthase (EC 4.6.1.4) were studied by a rapid-acid-quench technique at 25 degrees C at pH 7.5. No pre-steady-state ‘burst’ or ‘lag’ phase was observed, showing that phosphate is released concomitant with the rate-limiting step of the enzyme. The implications of this result for the mechanism of action of chorismate synthase are discussed.


1978 ◽  
Vol 169 (1) ◽  
pp. 39-54 ◽  
Author(s):  
Leighton G. Dann ◽  
Hubert G. Britton

1. The mechanism of rabbit muscle pyruvate kinase was investigated by measurements of fluxes, isotope trapping, steady-state velocity and binding of the substrates. All measurements were made at pH8.5 in Tris/HCl buffer and at 5mm-free Mg2+. 2. Methods of preparing [32P]phosphoenolpyruvate from [32P]Pi in high yield and determining [32P]-phosphoenolpyruvate and [8-14C]ADP are described. 3. The ratio Flux of ATP to ADP/Flux of ATP to phosphoenolpyruvate (measured at equilibrium) increased hyperbolically with ADP concentration from unity to about 2.1 at 2mm-ADP, but was unaffected by phosphoenolpyruvate concentration. Since the ratio is greater than unity, one pathway for the addition of substrates must involve phosphoenolpyruvate adding first to the enzyme in a rate-limiting step. However, the substrates must also add in the alternative order, because of the non-linear increase in the ratio with ADP concentration and because the rate of increase is very much less than that predicted from the steady-state velocity data for an ordered addition. The lack of influence of phosphoenolpyruvate on the ratio is consistent with the rapid addition of ADP in the alternative pathway. At low ADP concentrations the alternative pathway contributes less than 33% to the total reaction. 4. Isotope trapping was observed with [32P]phosphoenolpyruvate, confirming that when phosphoenolpyruvate adds first to the enzyme it is in a rate-limiting step. The release of phosphoenolpyruvate from the ternary complex must also be a slow step. Trapping was not observed with [8-14C]ADP, hence the addition of ADP to the free enzyme must be rapid unless its dissociation constant is very large (>20mm). 5. Binding studies showed that 4mol of [32P]phosphoenolpyruvate binds to 1mol of the enzyme, probably unligated to Mg2+, with a dissociation constant appropriate to the mechanism indicated above. Binding of [8-14C]ADP could not be detected, and hence the binding of ADP occurs by a low-affinity step. The latter is also demanded by the steady-state velocity data. 6. The ratio Flux of phosphoenolpyruvate to ATP/Flux of phosphoenolpyruvate to pyruvate (determined from the incorporation of label into phosphoenolpyruvate from [3-14C]-pyruvate or [γ-32P]ATP during the forward reaction) did not differ significantly from unity. Steady-state velocity data predicted grossly different flux ratios for ordered dissociations of the products, and the results indicate that the dissociation must be rapid and random. The data also exclude a Ping-Pong mechanism. 7. Permissible rate constants for the above mechanism are calculated. The results indicate a high degree of cooperativity in binding, whatever the order of addition of substrate.


1982 ◽  
Vol 203 (2) ◽  
pp. 505-510 ◽  
Author(s):  
R H Jackson ◽  
J A Cole ◽  
A Cornish-Bowden

The kinetic characteristics of the diaphorase activities associated with the NADH-dependent nitrite reductase (EC 1.6.6.4) from Escherichia coli have been determined. The values of the apparent maximum velocity are similar for the reduction of Fe(CN)6(3)-and mammalian cytochrome c by NADH. These reactions may therefore have the same rate-limiting step. NAD+ activates NADH-dependent reduction of cytochrome c, and the apparent maximum velocity for this substrate increases more sharply with the concentration of NAD+ than for hydroxylamine. The simplest explanation is that NAD+ activation of hydroxylamine reduction derives solely from activation of steps involved in the reduction of cytochrome c, a flavin-mediated reaction, but these steps are only partly rate-limiting for the reduction of hydroxylamine. At 0.5 mM-NAD+, the apparent maximum velocity was 2.3 times higher for 0.1 mM-cytochrome c as substrate than for 100 mM-hydroxylamine, suggesting that the rate-limiting step during hydroxylamine reduction is a step that is not involved in cytochrome c reduction. A scheme is proposed that can account for the pattern of variation with [NAD+] of the Michaelis-Menten parameters for hydroxylamine and for NADH with hydroxylamine or cytochrome c as oxidized substrate.


1998 ◽  
Vol 72 (9) ◽  
pp. 7057-7063 ◽  
Author(s):  
Christian H. Gross ◽  
Stewart Shuman

ABSTRACT Autographa californica nuclear polyhedrosis virus (AcNPV) encodes a 168-amino-acid polypeptide that contains the signature motif of the superfamily of protein phosphatases that act via a covalent cysteinyl phosphate intermediate. The sequence of the AcNPV phosphatase is similar to that of the RNA triphosphatase domain of the metazoan cellular mRNA capping enzyme. Here, we show that the purified recombinant AcNPV protein is an RNA 5′-triphosphatase that hydrolyzes the γ-phosphate of triphosphate-terminated poly(A); it also hydrolyzes ATP to ADP and GTP to GDP. The phosphatase sediments as two discrete components in a glycerol gradient: a 9.5S oligomer and 2.5S putative monomer. The 2.5S form of the enzyme releases 32Pi from 1 μM γ-32P-labeled triphosphate-terminated poly(A) with a turnover number of 52 min−1 and converts ATP to ADP with V max of 8 min−1and Km of 25 μM ATP. The 9.5S oligomeric form of the enzyme displays an initial pre-steady-state burst of ADP and Pi formation, which is proportional to and stoichiometric with the enzyme, followed by a slower steady-state rate of product formation (approximately 1/10 of the steady-state rate of the 2.5S enzyme). We surmise that the oligomeric enzyme is subject to a rate-limiting step other than reaction chemistry and that this step is either distinct from or slower than the rate-limiting step for the 2.5S enzyme. Replacing the presumptive active site nucleophile Cys-119 by alanine abrogates RNA triphosphatase and ATPase activity. Our findings raise the possibility that baculoviruses encode enzymes that cap the 5′ ends of viral transcripts synthesized at late times postinfection by a virus-encoded RNA polymerase.


2019 ◽  
Vol 476 (4) ◽  
pp. 719-732 ◽  
Author(s):  
Mykola M. Ilchenko ◽  
Mariia Yu. Rybak ◽  
Alex V. Rayevsky ◽  
Oksana P. Kovalenko ◽  
Igor Ya. Dubey ◽  
...  

Abstract d-aminoacyl-tRNA-deacylase (DTD) prevents the incorporation of d-amino acids into proteins during translation by hydrolyzing the ester bond between mistakenly attached amino acids and tRNAs. Despite extensive study of this proofreading enzyme, the precise catalytic mechanism remains unknown. Here, a combination of biochemical and computational investigations has enabled the discovery of a new substrate-assisted mechanism of d-Tyr-tRNATyr hydrolysis by Thermus thermophilus DTD. Several functional elements of the substrate, misacylated tRNA, participate in the catalysis. During the hydrolytic reaction, the 2′-OH group of the А76 residue of d-Tyr-tRNATyr forms a hydrogen bond with a carbonyl group of the tyrosine residue, stabilizing the transition-state intermediate. Two water molecules participate in this reaction, attacking and assisting ones, resulting in a significant decrease in the activation energy of the rate-limiting step. The amino group of the d-Tyr aminoacyl moiety is unprotonated and serves as a general base, abstracting the proton from the assisting water molecule and forming a more nucleophilic ester-attacking species. Quantum chemical methodology was used to investigate the mechanism of hydrolysis. The DFT-calculated deacylation reaction is in full agreement with the experimental data. The Gibbs activation energies for the first and second steps were 10.52 and 1.05 kcal/mol, respectively, highlighting that the first step of the hydrolysis process is the rate-limiting step. Several amino acid residues of the enzyme participate in the coordination of the substrate and water molecules. Thus, the present work provides new insights into the proofreading details of misacylated tRNAs and can be extended to other systems important for translation fidelity.


2015 ◽  
Vol 5 (1) ◽  
pp. 129-133 ◽  
Author(s):  
U. Gellrich ◽  
T. Koslowski ◽  
B. Breit

A complete dynamic kinetic analysis beyond the steady state approximation of the rhodium-catalyzed hydroformylation with the 6-DPPon ligand is presented. The results show that not one single step but several transition states and intermediates control the selectivity and activity of the catalysis.


2016 ◽  
Vol 473 (5) ◽  
pp. 651-660 ◽  
Author(s):  
Renata A.G. Reis ◽  
Patricia Ferreira ◽  
Milagros Medina ◽  
M. Cristina Nonato

Leishmania major dihydro-orotate dehydrogenase (DHODHLm) oxidizes dihydro-orotate to orotate (ORO) in the de novo pyrimidine biosynthetic pathway. The enzyme reaction mechanism was elucidated by steady- and pre-steady-state kinetics. ORO release was found to be the rate-limiting step in the overall catalysis.


2008 ◽  
Vol 36 (6) ◽  
pp. 1120-1123 ◽  
Author(s):  
Sarah J. Thackray ◽  
Christopher G. Mowat ◽  
Stephen K. Chapman

The haem proteins TDO (tryptophan 2,3-dioxygenase) and IDO (indoleamine 2,3-dioxygenase) are specific and powerful oxidation catalysts that insert one molecule of dioxygen into L-tryptophan in the first and rate-limiting step in the kynurenine pathway. Recent crystallographic and biochemical analyses of TDO and IDO have greatly aided our understanding of the mechanisms employed by these enzymes in the binding and activation of dioxygen and tryptophan. In the present paper, we briefly discuss the function, structure and possible catalytic mechanism of these enzymes.


Sign in / Sign up

Export Citation Format

Share Document