Oxidative modification of triacylglycerol-rich lipoproteins

2003 ◽  
Vol 31 (5) ◽  
pp. 1062-1065 ◽  
Author(s):  
I.S. Young ◽  
C. McFarlane ◽  
J. McEneny

Lipoprotein oxidation is thought to play a pivotal role in the evolution of atherosclerosis. Low-density lipoprotein (LDL) is the main source of oxidized lipid in the arterial wall. Oxidation of LDL alters its properties in a number of ways, making it more atherogenic, but oxidation of other lipoprotein classes may also be important. Common mechanisms are likely to contribute to the oxidation of all lipoprotein classes, with enzyme-mediated oxidation likely to be most important. Antioxidant content, fatty acid composition, particle size and the presence of seeding hydroperoxides also influence oxidative reactions. Larger triglyceride-rich lipoproteins are less likely to enter the arterial wall than LDL, but when oxidized will deliver a greater oxidant load to the arterial wall.

2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Ibrahim Jantan ◽  
Fadlina Chany Saputri ◽  
Muhammad Naeem Qaisar ◽  
Fhataheya Buang

The antioxidant activity of the curcuminoids ofCurcuma domesticaL. andC. xanthorrhizaRoxb. and eight compounds which are prevalent constituents of their rhizome oils were investigated in an effort to correlate human low-density lipoprotein (LDL) antioxidant activity with the effect of the herbs and their components. The antioxidant activity was examined using thiobarbituric acid reactive substances (TBARSs) assay with human LDL as the oxidation substrate. The methanol extracts and rhizome oils ofC. xanthorrhizaandC. domesticashowed strong inhibitory activity on copper-mediated oxidation of LDL. Curcumin, demethoxycurcumin, and bisdemethoxycurcumin, isolated from the methanol extracts of both plants, exhibited stronger activity than probucol (IC50value 0.57 μmol/L) as reference, with IC50values ranging from 0.15 to 0.33 μmol/L. Xanthorrhizol, the most abundant component (31.9%) of the oil ofC. xanthorrhiza, showed relatively strong activity with an IC50value of 1.93 μmol/L. The major components ofC. domestica, ar-turmerone (45.8%) and zerumbone (3.5%), exhibited IC50values of 10.18 and 24.90 μmol/L, respectively. The high levels of curcuminoids in the methanol extracts and xanthorrhizol, ar-turmerone and zerumbone in the oils, and in combination with the minor components were responsible for the high LDL antioxidant activity of the herbs.


Author(s):  
Mohammed Alsaweed

Atherosclerosis (AS) is a multifaceted inflammatory syndrome of the arterial wall to which number of mediators have been implicated in lesion progression. Triglyceride (TG)-rich lipoproteins consist of the large diversity of lipoprotein particles that fluctuate in density, size, and apolipoprotein composition. Two foremost phenotypes, on basis of size, chemical configuration, and density, of low-density-lipoprotein (LDL) have been recognized i.e., pattern A, having LDL diameter greater than 25.5nm (large buoyant LDL or lb-LDL) and pattern B, having LDL diameter less than or equal to 25.5nm (small-dense LDL or sd-LDL). Small-dense low-density-lipoprotein (sd-LDL) particles are produced by potential intravascular hydrolysis of TG-rich VLDL particles via lipoprotein lipases (LPLs), hepatic lipases (HLs) and cholesterol ester transfer protein (CETP). sd-LDL is more atherogenic due to its smaller size, increased penetration into the arterial wall, extended plasma half-life, lesser binding affinity for LDL receptors (LDL-R) as well as lower resistance to oxidative stress when equated with lb-LDL. The higher atherogenic potential of sd-LDL is due to its enhanced susceptibility to oxidation, owing to high polyunsaturated fatty acids (PUFA), low cholesterol and Apoprotein B (ApoB) content. An enhanced understanding of sd-LDL metabolism at the molecular level, transport and clearance may result in the development of sd-LDL as an independent predictive marker for AS events and may be used to maintain cholesterol homeostasis and prevent the succession of AS.


2004 ◽  
Vol 32 (1) ◽  
pp. 156-159 ◽  
Author(s):  
E. Niki

The oxidative modification of low-density lipoprotein (LDL) can be induced by various active species by different mechanisms. Vitamin E and other radical-scavenging antioxidants can inhibit the free radical-mediated oxidation of LDL, but they are not effective against LDL oxidation induced by non-radical mechanisms.


1991 ◽  
Vol 278 (1) ◽  
pp. 163-169 ◽  
Author(s):  
W Jessup ◽  
V Darley-Usmar ◽  
V O'Leary ◽  
S Bedwell

The concentration-dependent effects of a series of lipoxygenase inhibitors and antioxidants on the macrophage-mediated oxidative modification of low-density lipoprotein (LDL) were measured. Their influence on macrophage 5-lipoxygenase pathway activity was also studied over the same concentration range. No correlation between inhibition of 5-lipoxygenase and of macrophage-mediated oxidation of LDL was observed. The capacity of the compounds to prevent cell-mediated modification of LDL could be explained in terms of their activity as either aqueous- or lipid-peroxyl radical scavengers. Two potent 5-lipoxygenase inhibitors (MK 886 and Revlon 5901), which had no radical-scavenging properties, were unable to block LDL modification. It is concluded that 5-lipoxygenase is not essential for LDL oxidation by macrophages.


Circulation ◽  
1996 ◽  
Vol 94 (7) ◽  
pp. 1698-1704 ◽  
Author(s):  
Klaus Juul ◽  
Lars B. Nielsen ◽  
Klaus Munkholm ◽  
Steen Stender ◽  
Børge G. Nordestgaard

Sign in / Sign up

Export Citation Format

Share Document