Neuronal calcium sensors and synaptic plasticity

2009 ◽  
Vol 37 (6) ◽  
pp. 1359-1363 ◽  
Author(s):  
Mascia Amici ◽  
Andrew Doherty ◽  
Jihoon Jo ◽  
David Jane ◽  
Kwangwook Cho ◽  
...  

Calcium entry plays a major role in the induction of several forms of synaptic plasticity in different areas of the central nervous system. The spatiotemporal aspects of these calcium signals can determine the type of synaptic plasticity induced, e.g. LTP (long-term potentiation) or LTD (long-term depression). A vast amount of research has been conducted to identify the molecular and cellular signalling pathways underlying LTP and LTD, but many components remain to be identified. Calcium sensor proteins are thought to play an essential role in regulating the initial part of synaptic plasticity signalling pathways. However, there is still a significant gap in knowledge, and it is only recently that evidence for the importance of members of the NCS (neuronal calcium sensor) protein family has started to emerge. The present minireview aims to bring together evidence supporting a role for NCS proteins in plasticity, focusing on emerging roles of NCS-1 and hippocalcin.

2021 ◽  
Author(s):  
Yujun Guo ◽  
Guichang Zou ◽  
Keke Qi ◽  
Jin Jin ◽  
Lei Yao ◽  
...  

Abstract Lipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive


2014 ◽  
Vol 369 (1633) ◽  
pp. 20130148 ◽  
Author(s):  
Sarah R. Hulme ◽  
Owen D. Jones ◽  
Clarke R. Raymond ◽  
Pankaj Sah ◽  
Wickliffe C. Abraham

Synaptic plasticity is fundamental to the neural processes underlying learning and memory. Interestingly, synaptic plasticity itself can be dynamically regulated by prior activity, in a process termed ‘metaplasticity’, which can be expressed both homosynaptically and heterosynaptically. Here, we focus on heterosynaptic metaplasticity, particularly long-range interactions between synapses spread across dendritic compartments, and review evidence for intra cellular versus inter cellular signalling pathways leading to this effect. Of particular interest is our previously reported finding that priming stimulation in stratum oriens of area CA1 in the hippocampal slice heterosynaptically inhibits subsequent long-term potentiation and facilitates long-term depression in stratum radiatum. As we have excluded the most likely intracellular signalling pathways that might mediate this long-range heterosynaptic effect, we consider the hypothesis that intercellular communication may be critically involved. This hypothesis is supported by the finding that extracellular ATP hydrolysis, and activation of adenosine A2 receptors are required to induce the metaplastic state. Moreover, delivery of the priming stimulation in stratum oriens elicited astrocytic calcium responses in stratum radiatum. Both the astrocytic responses and the metaplasticity were blocked by gap junction inhibitors. Taken together, these findings support a novel intercellular communication system, possibly involving astrocytes, being required for this type of heterosynaptic metaplasticity.


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Yujun Guo ◽  
Guichang Zou ◽  
Keke Qi ◽  
Jin Jin ◽  
Lei Yao ◽  
...  

AbstractLipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive function impairment, caused by long-term usage of BBB-permeable statins.


2020 ◽  
Author(s):  
Yujun Guo ◽  
Guichang Zou ◽  
Jin Jin ◽  
Lei Yao ◽  
Keke Qi ◽  
...  

Abstract Lipophilic statins which are blood brain barrier (BBB) permeable are speculated to affect the cholesterol synthesis and neural functions in the central nervous system. However, whether these statins can affect cholesterol levels and synaptic plasticity in hippocampus and the in vivo consequence remain unclear. Here, we report that long-term subcutaneous treatments of simvastatin significantly impair mouse hippocampal synaptic plasticity, reflected by the attenuated long-term potentiation of field excitatory postsynaptic potentials. The simvastatin administration causes a deficiency in recognition and spatial memory but fails to affect motor ability and anxiety behaviors in the mice. Mass spectrometry imaging indicates a significant decrease in cholesterol intensity in hippocampus of the mice receiving chronic simvastatin treatments. Such effects of simvastatin are transient because drug discontinuation can restore the hippocampal cholesterol level and synaptic plasticity and the memory function. These findings may provide further clues to elucidate the mechanisms of neurological side effects, especially the brain cognitive function impairment, caused by long-term usage of BBB-permeable statins.


2016 ◽  
Vol 113 (46) ◽  
pp. 13209-13214 ◽  
Author(s):  
Evanthia Nanou ◽  
Todd Scheuer ◽  
William A. Catterall

Many forms of short-term synaptic plasticity rely on regulation of presynaptic voltage-gated Ca2+ type 2.1 (CaV2.1) channels. However, the contribution of regulation of CaV2.1 channels to other forms of neuroplasticity and to learning and memory are not known. Here we have studied mice with a mutation (IM-AA) that disrupts regulation of CaV2.1 channels by calmodulin and related calcium sensor proteins. Surprisingly, we find that long-term potentiation (LTP) of synaptic transmission at the Schaffer collateral-CA1 synapse in the hippocampus is substantially weakened, even though this form of synaptic plasticity is thought to be primarily generated postsynaptically. LTP in response to θ-burst stimulation and to 100-Hz tetanic stimulation is much reduced. However, a normal level of LTP can be generated by repetitive 100-Hz stimulation or by depolarization of the postsynaptic cell to prevent block of NMDA-specific glutamate receptors by Mg2+. The ratio of postsynaptic responses of NMDA-specific glutamate receptors to those of AMPA-specific glutamate receptors is decreased, but the postsynaptic current from activation of NMDA-specific glutamate receptors is progressively increased during trains of stimuli and exceeds WT by the end of 1-s trains. Strikingly, these impairments in long-term synaptic plasticity and the previously documented impairments in short-term synaptic plasticity in IM-AA mice are associated with pronounced deficits in spatial learning and memory in context-dependent fear conditioning and in the Barnes circular maze. Thus, regulation of CaV2.1 channels by calcium sensor proteins is required for normal short-term synaptic plasticity, LTP, and spatial learning and memory in mice.


2021 ◽  
Vol In Press (In Press) ◽  
Author(s):  
Zahra Salimi ◽  
Farshad Moradpour ◽  
Zahra Rashidi ◽  
Fatemeh Zarei ◽  
Mohammad Rasool Khazaei ◽  
...  

: Long-term potentiation (LTP) is one of the most important topics in neuroscience. It refers to a long-lasting increase in synaptic efficacy and is considered as a molecular and cellular mechanism of learning and memory. Neurotrophins play essential roles in different processes in the central nervous system (CNS), such as synaptogenesis, survival of specific populations of neurons, and neuroplasticity. Some evidence suggests that neurotrophins also participate in the synaptic plasticity related to learning and memory formation. Brain-derived neurotrophic factor (BDNF) is an important neurotrophic factor that is extensively expressed in the hippocampus and cerebral cortex, where it promotes neuroprotection, increases synaptogenesis and neurotransmission, and mediates synapse formation and synaptic plasticity. In this review, we first focused on the research investigating the effects of BDNF on synaptic plasticity and LTP induction and then reviewed the neuronal signaling molecules employed by BDNF to promote its effects on these processes.


2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2006 ◽  
Vol 16 ◽  
pp. S52
Author(s):  
S. Salomon ◽  
Y. Nachum-Biala ◽  
Y. Bogush ◽  
M. Lineal ◽  
H. Matzner ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yire Jeong ◽  
Hye-Yeon Cho ◽  
Mujun Kim ◽  
Jung-Pyo Oh ◽  
Min Soo Kang ◽  
...  

AbstractMemory is supported by a specific collection of neurons distributed in broad brain areas, an engram. Despite recent advances in identifying an engram, how the engram is created during memory formation remains elusive. To explore the relation between a specific pattern of input activity and memory allocation, here we target a sparse subset of neurons in the auditory cortex and thalamus. The synaptic inputs from these neurons to the lateral amygdala (LA) are not potentiated by fear conditioning. Using an optogenetic priming stimulus, we manipulate these synapses to be potentiated by the learning. In this condition, fear memory is preferentially encoded in the manipulated cell ensembles. This change, however, is abolished with optical long-term depression (LTD) delivered shortly after training. Conversely, delivering optical long-term potentiation (LTP) alone shortly after fear conditioning is sufficient to induce the preferential memory encoding. These results suggest a synaptic plasticity-dependent competition rule underlying memory formation.


Sign in / Sign up

Export Citation Format

Share Document