neuronal calcium sensor protein
Recently Published Documents


TOTAL DOCUMENTS

30
(FIVE YEARS 5)

H-INDEX

14
(FIVE YEARS 1)

2021 ◽  
Vol 22 (19) ◽  
pp. 10809
Author(s):  
Amedeo Biasi ◽  
Valerio Marino ◽  
Giuditta Dal Cortivo ◽  
Paolo Enrico Maltese ◽  
Antonio Mattia Modarelli ◽  
...  

Guanylate cyclase-activating protein 1 (GCAP1), encoded by the GUCA1A gene, is a neuronal calcium sensor protein involved in shaping the photoresponse kinetics in cones and rods. GCAP1 accelerates or slows the cGMP synthesis operated by retinal guanylate cyclase (GC) based on the light-dependent levels of intracellular Ca2+, thereby ensuring a timely regulation of the phototransduction cascade. We found a novel variant of GUCA1A in a patient affected by autosomal dominant cone dystrophy (adCOD), leading to the Asn104His (N104H) amino acid substitution at the protein level. While biochemical analysis of the recombinant protein showed impaired Ca2+ sensitivity of the variant, structural properties investigated by circular dichroism and limited proteolysis excluded major structural rearrangements induced by the mutation. Analytical gel filtration profiles and dynamic light scattering were compatible with a dimeric protein both in the presence of Mg2+ alone and Mg2+ and Ca2+. Enzymatic assays showed that N104H-GCAP1 strongly interacts with the GC, with an affinity that doubles that of the WT. The doubled IC50 value of the novel variant (520 nM for N104H vs. 260 nM for the WT) is compatible with a constitutive activity of GC at physiological levels of Ca2+. The structural region at the interface with the GC may acquire enhanced flexibility under high Ca2+ conditions, as suggested by 2 μs molecular dynamics simulations. The altered interaction with GC would cause hyper-activity of the enzyme at both low and high Ca2+ levels, which would ultimately lead to toxic accumulation of cGMP and Ca2+ in the photoreceptor outer segment, thus triggering cell death.


Molecules ◽  
2021 ◽  
Vol 26 (1) ◽  
pp. 227
Author(s):  
Jingyi Zhang ◽  
Anuradha Krishnan ◽  
Hao Wu ◽  
Venkat Venkataraman

S100B is a calcium-binding protein that governs calcium-mediated responses in a variety of cells—especially neuronal and glial cells. It is also extensively investigated as a potential biomarker for several disease conditions, especially neurodegenerative ones. In order to establish S100B as a viable pharmaceutical target, it is critical to understand its mechanistic role in signaling pathways and its interacting partners. In this report, we provide evidence to support a calcium-regulated interaction between S100B and the neuronal calcium sensor protein, neurocalcin delta both in vitro and in living cells. Membrane overlay assays were used to test the interaction between purified proteins in vitro and bimolecular fluorescence complementation assays, for interactions in living cells. Added calcium is essential for interaction in vitro; however, in living cells, calcium elevation causes translocation of the NCALD-S100B complex to the membrane-rich, perinuclear trans-Golgi network in COS7 cells, suggesting that the response is independent of specialized structures/molecules found in neuronal/glial cells. Similar results are also observed with hippocalcin, a closely related paralog; however, the interaction appears less robust in vitro. The N-terminal region of NCALD and HPCA appear to be critical for interaction with S100B based on in vitro experiments. The possible physiological significance of this interaction is discussed.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Ko-Fan Chen ◽  
Simon Lowe ◽  
Angélique Lamaze ◽  
Patrick Krätschmer ◽  
James Jepson

Sleep-like states in diverse organisms can be separated into distinct stages, each with a characteristic arousal threshold. However, the molecular pathways underlying different sleep stages remain unclear. The fruit fly, Drosophila melanogaster, exhibits consolidated sleep during both day and night, with night sleep associated with higher arousal thresholds compared to day sleep. Here we identify a role for the neuronal calcium sensor protein Neurocalcin (NCA) in promoting sleep during the night but not the day by suppressing nocturnal arousal and hyperactivity. We show that both circadian and light-sensing pathways define the temporal window in which NCA promotes sleep. Furthermore, we find that NCA promotes sleep by suppressing synaptic release from a dispersed wake-promoting neural network and demonstrate that the mushroom bodies, a sleep-regulatory center, are a module within this network. Our results advance the understanding of how sleep stages are genetically defined.


Contact ◽  
2019 ◽  
Vol 2 ◽  
pp. 251525641984740 ◽  
Author(s):  
Benjamin Delprat ◽  
Jennifer Rieusset ◽  
Cécile Delettre

Interactions between endoplasmic reticulum (ER) and mitochondria are key components of essential cellular functions. Indeed, these membrane appositions are necessary for proper Ca2+ transfer from ER to mitochondria, to regulate lipid metabolism, apoptosis, and inflammation. We report that the ER protein WFS1 interacts with the neuronal calcium sensor protein NCS1 to regulate mitochondria associated-ER membrane formation. Mutations in the WFS1 gene are associated with Wolfram syndrome, a rare neurodegenerative disease. We demonstrated that human WFS1-deficient cells lack NCS1 and fail to tether ER and mitochondria, resulting in a decrease in Ca2+ transfer and mitochondrial respiration. Interestingly, we showed that NCS1 overexpression in WFS1-deficient cells restored ER–mitochondria interactions and calcium exchange. Our results suggest that WFS1 regulates ER tethering to mitochondria through NCS1 and that restoration of NCS1 expression could be a therapeutic tool for restoring calcium signaling at the mitochondria associated-ER membrane interface and mitochondrial function in Wolfram syndrome.


2016 ◽  
Vol 4 (6) ◽  
pp. e12740 ◽  
Author(s):  
Stasia D'Onofrio ◽  
Francisco J. Urbano ◽  
Erick Messias ◽  
Edgar Garcia-Rill

2015 ◽  
Vol 113 (3) ◽  
pp. 709-719 ◽  
Author(s):  
Stasia D'Onofrio ◽  
Nebojsa Kezunovic ◽  
James R. Hyde ◽  
Brennon Luster ◽  
Erick Messias ◽  
...  

Reduced levels of gamma-band activity are present in schizophrenia and bipolar disorder patients. In the same disorders, increased neuronal calcium sensor protein-1 (NCS-1) expression was reported in a series of postmortem studies. These disorders are also characterized by sleep dysregulation, suggesting a role for the reticular activating system (RAS). The discovery of gamma-band activity in the pedunculopontine nucleus (PPN), the cholinergic arm of the RAS, revealed that such activity was mediated by high-threshold calcium channels that are regulated by NCS-1. We hypothesized that NCS-1 normally regulates gamma-band oscillations through these calcium channels and that excessive levels of NCS-1, such as would be expected with overexpression, decrease gamma-band activity. We found that PPN neurons in rat brain slices manifested gamma-band oscillations that were increased by low levels of NCS-1 but suppressed by high levels of NCS-1. Our results suggest that NCS-1 overexpression may be responsible for the decrease in gamma-band activity present in at least some schizophrenia and bipolar disorder patients.


Sign in / Sign up

Export Citation Format

Share Document