Experimental Expansion of the Bile Acid Pool

1973 ◽  
Vol 44 (4) ◽  
pp. 19P-20P
Author(s):  
H. Y. I. Mok ◽  
P. M. Perry ◽  
R. Hermon Dowling
Keyword(s):  
2001 ◽  
Vol 120 (5) ◽  
pp. A1
Author(s):  
William M. Pandak ◽  
Phillip B. Hylemon ◽  
Patricia Bohdan ◽  
Ingemar Bjorkhem ◽  
Gosta Eggertsen ◽  
...  

1982 ◽  
Vol 283 (1) ◽  
pp. 23-31 ◽  
Author(s):  
H. Cohen ◽  
G.G. Bonorris ◽  
J.W. Marks ◽  
L.J. Schoenfield

1981 ◽  
Vol 80 (6) ◽  
pp. 1428-1437 ◽  
Author(s):  
Maurizio Ponz De Leon ◽  
Paola Loria ◽  
Rossella Iori ◽  
Nicola Carulli

1986 ◽  
Vol 70 (s13) ◽  
pp. 37P-37P
Author(s):  
D Gleeson ◽  
Y Quereshi ◽  
GM Murphy ◽  
RH Dowling

2018 ◽  
Vol 32 (7) ◽  
pp. 3792-3802 ◽  
Author(s):  
Raphael Chevre ◽  
Laia Trigueros‐Motos ◽  
David Castaño ◽  
Tricia Chua ◽  
Maria Corlianò ◽  
...  

Metabolites ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 242
Author(s):  
Véronique de Bruijn ◽  
Christina Behr ◽  
Saskia Sperber ◽  
Tilmann Walk ◽  
Philipp Ternes ◽  
...  

Various environmental factors can alter the gut microbiome’s composition and functionality, and modulate host health. In this study, the effects of oral and parenteral administration of two poorly bioavailable antibiotics (i.e., vancomycin and streptomycin) on male Wistar Crl/Wi(Han) rats for 28 days were compared to distinguish between microbiome-derived or -associated and systemic changes in the plasma metabolome. The resulting changes in the plasma metabolome were compared to the effects of a third reference compound, roxithromycin, which is readily bioavailable. A community analysis revealed that the oral administration of vancomycin and roxithromycin in particular leads to an altered microbial population. Antibiotic-induced changes depending on the administration routes were observed in plasma metabolite levels. Indole-3-acetic acid (IAA) and hippuric acid (HA) were identified as key metabolites of microbiome modulation, with HA being the most sensitive. Even though large variations in the plasma bile acid pool between and within rats were observed, the change in microbiome community was observed to alter the composition of the bile acid pool, especially by an accumulation of taurine-conjugated primary bile acids. In-depth investigation of the relationship between microbiome variability and their functionality, with emphasis on the bile acid pool, will be necessary to better assess the potential adverseness of environmentally induced microbiome changes.


2004 ◽  
Vol 286 (5) ◽  
pp. G730-G735 ◽  
Author(s):  
Guorong Xu ◽  
Lu-xing Pan ◽  
Hai Li ◽  
Quan Shang ◽  
Akira Honda ◽  
...  

Cholesterol feeding upregulates CYP7A1 in rats but downregulates CYP7A1 in rabbits. To clarify the mechanism responsible for the upregulation of CYP7A1 in cholesterol-fed rats, the effects of dietary cholesterol (Ch) and cholic acid (CA) on the activation of the nuclear receptors, liver X-receptor (LXR-α) and farsenoid X-receptor (FXR), which positively and negatively regulate CYP7A1, were investigated in rats. Studies were carried out in four groups ( n = 12/group) of male Sprague-Dawley rats fed regular chow (control), 2% Ch, 2% Ch + 1% CA, and 1% CA alone for 1 wk. Changes in mRNA expression of short heterodimer partner (SHP) and bile salt export pump (BSEP), target genes for FXR, were determined to indicate FXR activation, whereas the expression of ABCA1 and lipoprotein lipase (LPL), target genes for LXR-α, reflected activation. CYP7A1 mRNA and activity increased twofold and 70%, respectively, in rats fed Ch alone when the bile acid pool size was stable but decreased 43 and 49%, respectively, after CA was added to the Ch diet, which expanded the bile acid pool 3.4-fold. SHP and BSEP mRNA levels did not change after feeding Ch but increased 88 and 37% in rats fed Ch + CA. This indicated that FXR was activated by the expanded bile acid pool. When Ch or Ch + CA were fed, hepatic concentrations of oxysterols, ligands for LXR-α increased to activate LXR-α, as evidenced by increased mRNA levels of ABCA1 and LPL. Feeding CA alone enlarged the bile acid pool threefold and increased the expression of both SHP and BSEP. These results suggest that LXR-α was activated in rats fed both Ch or Ch + CA, whereas CYP7A1 mRNA and activity were induced only in Ch-fed rats where the bile acid pool was not enlarged such that FXR was not activated. In rats fed Ch + CA, the bile acid pool expanded, which activated FXR to offset the stimulatory effects of LXR-α on CYP7A1.


Sign in / Sign up

Export Citation Format

Share Document