The Effect of Ethane-1-Hydroxy-1,1-Diphosphonate (EHDP) on Calcium Oxalate Crystalluria in Recurrent Renal Stone-Formers

1974 ◽  
Vol 47 (1) ◽  
pp. 13-22 ◽  
Author(s):  
W. G. Robertson ◽  
M. Peacock ◽  
R. W. Marshall ◽  
F. Knowles

1. The volume, size and type of calcium oxalate crystals excreted in the urine of a group of patients with recurrent ‘idiopathic’ stones were studied on a controlled basal diet, after an oral supplement of sodium oxalate and after oral administration of ethane-1-hydroxy-1,1-diphosphonate (EHDP) for 4 weeks. 2. Before administration of EHDP the stone-formers passed the large crystals and aggregates of calcium oxalate dihydrate characteristic of recurrent calcium oxalate stone-formers. For the same level of urine saturation and crystalluria EHDP caused a significant reduction in the proportion of large crystals and aggregates excreted. Studies by light-microscopy confirmed that EHDP caused a striking change in the size and habit of calcium oxalate crystals in some but not all of the urine samples examined. 3. The decrease in average crystal size during the administration of EHDP was attributed to the observed increase in the ability of urine to inhibit the growth and aggregation of calcium oxalate crystals as measured by a growth system in vitro. 4. The possible use of EHDP as a therapeutic agent in the treatment of calcium oxalate stone-formation is discussed.

1972 ◽  
Vol 43 (4) ◽  
pp. 499-506 ◽  
Author(s):  
W. G. Robertson ◽  
M. Peacock

1. The particle size distributions of calcium oxalate crystals were measured at 37°C in fresh urine from recurrent, idiopathic stone-formers and their controls under the same conditions of dietary and fluid intake. The crystals excreted by the controls were small and belonged to a unimodal distribution, whereas those excreted by the stone-formers belonged to a distribution which contained a second peak of much larger particles. The proportion of large crystals in the urines of the stone-formers was significantly higher than in the urines of the controls. 2. The difference in the proportion of large particles passed by the two groups was accentuated by adding a small quantity of sodium oxalate to their diets. Whereas the controls continued to excrete only small crystals of calcium oxalate, the stone-formers passed most of their crystals as large particles. 3. Further investigations showed that the urines of the controls contained a potent inhibitor of the growth and aggregation of calcium oxalate crystals in vitro and that the inhibitor was deficient in the urines of the recurrent stone-formers. 4. It is suggested that the inhibitor in normal urine may allow calcium oxalate to be passed harmlessly in the form of small particles, whereas the lower inhibitory activity in the urines of the recurrent stone-formers is insufficient to prevent the growth of the primary crystals into the large aggregates seen in these urines. By blocking the formation of abnormally large crystals and aggregates the inhibitor may therefore play an important role in preventing crystalluria leading to stone formation.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 735
Author(s):  
Ana Petrović ◽  
Tomislav Kizivat ◽  
Ines Bilić Ćurčić ◽  
Robert Smolić ◽  
Martina Smolić

Urolithiasis is a multifactorial disease with a high incidence and high recurrence rate, characterized by formation of solid deposits in the urinary tract. The most common type of these stones are calcium oxalate stones. Calcium oxalate crystals can, in hyperoxaluric states, interact with renal epithelial cells, causing injury to the renal epithelia. Pathogenesis of urolithiasis is widely investigated, but underlying mechanisms are still not completely clarified. In vitro models offer insight into molecular processes which lead to renal stone formation and are significant for evaluation of prophylactic and therapeutic management of patients with urolithiasis. In this review, we summarize recently published data from in vitro studies investigating interactions of calcium oxalate crystals with renal epithelial cell lines, anti-urolithiatic mechanisms, and the results from studies exploring possible therapeutic and prophylactic options for calcium oxalate urolithiasis in cell cultures.


1995 ◽  
Vol 89 (5) ◽  
pp. 533-541 ◽  
Author(s):  
Rosemary L. Ryall ◽  
Phulwinder K. Grover ◽  
Alan M. F. Stapleton ◽  
Dianne K. Barrell ◽  
Yulu Tang ◽  
...  

1. The urinary F1 activation peptide of prothrombin is the predominant protein incorporated into calcium oxalate crystals precipitated from human urine. The aim of this study was to examine the effect of pure urinary prothrombin F1 on calcium oxalate crystallization in human urine. 2. Urinary prothrombin F1 was purified from demineralized calcium oxalate crystals precipitated from human urine, and its effects on calcium oxalate crystallization induced by addition of an oxalate load were tested in undiluted, ultrafiltered urine from healthy men, at final concentrations of 0 to 10 mg/l. 3. Urinary prothrombin F1 did not affect the amount of oxalate required to induce crystallization, but the volume of material deposited increased in proportion to increasing concentrations of urinary prothrombin F1. However, the mean particle size decreased in reverse order: this was confirmed by scanning electron microscopy, which showed it to be the result of a reduction in crystal aggregation rather than in the size of individual crystals. Analysis of 14C-oxalate data revealed a dose-dependent decrease in calcium oxalate deposition with an increase in urinary prothrombin F1 concentration, indicating that the increase in particle volume recorded by the Coulter Counter resulted from inclusion of urinary prothrombin F1 into the crystalline architecture, rather than increased deposition of calcium oxalate. 4. It was concluded that urinary prothrombin F1 may be an important macromolecular determinant of stone formation.


1971 ◽  
Vol 40 (5) ◽  
pp. 365-374 ◽  
Author(s):  
W. G. Robertson ◽  
M. Peacock ◽  
B. E. C. Nordin

1. The degree of saturation with calcium oxalate has been determined in fresh urine samples from six patients with recurrent calcium oxalate-containing renal stones and six normal control subjects who were studied under the same conditions of diet and fluid intake. 2. The degree of saturation of urine with calcium oxalate was significantly higher in the group of stone-formers than in the control series and more often exceeded the amount needed for spontaneous crystallization of calcium oxalate (formation product). This was accounted for by the higher concentration of calcium and oxalate in the urine of the stone-formers. 3. Crystals of calcium oxalate were observed in all freshly examined urines in which the formation product of calcium oxalate was exceeded. Since the formation product of calcium oxalate was exceeded more often in the urines of stone-formers than in the urines of the control subjects, this accounted for the greater calcium oxalate crystalluria of the stone-formers. 4. Addition of a small quantity of sodium oxalate to the basal diets of the two groups resulted in a greater increase in the urine saturation and calcium oxalate crystalluria of the stone-formers, thus accentuating the difference observed between the two groups when they were given the basal diet. 5. Calcium oxalate crystalluria was related quantitatively to the degree of over-saturation of urine with calcium oxalate, although uric acid solubility may play a small role at low pH values. 6. The results are consistent with a ‘hyperexcretion—crystallization’ mechanism of stone formation.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Atsushi Okada ◽  
Takahiro Yasui ◽  
Kazumi Taguchi ◽  
Yasuhiko Hirose ◽  
Kazuhiro Niimi ◽  
...  

Kidney360 ◽  
2020 ◽  
pp. 10.34067/KID.0006942020
Author(s):  
Jessica J. Saw ◽  
Mayandi Sivaguru ◽  
Elena M. Wilson ◽  
Yiran Dong ◽  
Robert A. Sanford ◽  
...  

Background: Human kidney stones form via repeated events of mineral precipitation, partial dissolution and reprecipitation, which are directly analogous to similar processes in other natural and man-made environments where resident microbiomes strongly influence biomineralization. High-resolution microscopy and high-fidelity metagenomic (microscopy-to-omics) analyses, applicable to all forms of biomineralization, have been applied to assemble definitive evidence of in vivo microbiome entombment during urolithiasis. Methods: Stone fragments were collected from a randomly chosen cohort of 20 patients using standard percutaneous nephrolithotomy (PCNL). Fourier transform infrared (FTIR) spectroscopy indicated that 18 of these patients were calcium oxalate (CaOx) stone formers, while one patient each formed brushite and struvite stones. This apportionment is consistent with global stone mineralogy distributions. Stone fragments from 7 of these 20 patients (5 CaOx, 1 brushite and 1 struvite) were thin sectioned and analyzed using brightfield (BF), polarization (POL), confocal, superresolution autofluorescence (SRAF) and Raman techniques. DNA from remaining fragments, grouped according to each of the 20 patients, were analyzed with amplicon sequencing of 16S rRNA gene sequences (V1-V3, V3-V5) and internal transcribed spacer (ITS1, ITS2) regions. Results: Bulk entombed DNA was sequenced from stone fragments in 11 of the 18 CaOx patients, as well as the brushite and struvite patients. These analyses confirmed the presence of an entombed low-diversity community of bacteria and fungi, including Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria, and Aspergillus niger. Bacterial cells ~1  µm in diameter were also optically observed to be entombed and well-preserved in amorphous hydroxyapatite spherules and fans of needle-like crystals of brushite and struvite. Conclusions: These results indicate a microbiome is entombed during in vivo CaOx stone formation. Similar processes are implied for brushite and struvite stones. This evidence lays the groundwork for future in vitro and in vivo experimentation to determine how the microbiome may actively and/or passively influence kidney stone biomineralization.


Sign in / Sign up

Export Citation Format

Share Document