sodium oxalate
Recently Published Documents


TOTAL DOCUMENTS

248
(FIVE YEARS 37)

H-INDEX

20
(FIVE YEARS 2)

Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 47-58
Author(s):  
Sarah Tschirner ◽  
Eric Weingart ◽  
Linda Teevs ◽  
Ulf Prüße

In this work, a highly selective and active gold-based catalyst for the oxidation of high concentrated monoethylene glycol (MEG) in aqueous solution (3 M, 20 wt%) is described. High glycolic acid (GA) selectivity was achieved under mild reaction conditions. The optimization of the catalyst composition and of the reaction conditions for the oxidation of MEG in semi-batch mode under alkaline conditions led to a GA yield of >80% with a GA selectivity of about 90% in short reaction time. The bimetallic catalyst 0.1 wt% AuPt (9:1)/CeO2 showed very high activity (>2000 mmolMEG/gmetalmin) in the oxidation of MEG and, contrary to other studies, an extremely high educt to metal mole ratio of >25,000 was used. Additionally, the gold–platinum catalyst showed a high GA selectivity over more than 10 runs. A very efficient and highly selective process for the GA production from MEG under industrial relevant reaction conditions was established. In order to obtain a GA solution with high purity for the subsequent polymerization, the received reaction solution containing sodium glycolate, unreacted MEG and sodium oxalate is purified by a novel down-stream process via electrodialysis. The overall GA yield of the process exceeds 90% as unreacted MEG can be recycled.


2021 ◽  
pp. 1-7
Author(s):  
John A. Chmiel ◽  
Gerrit A. Stuivenberg ◽  
Abdulaziz Alathel ◽  
Jaswanth Gorla ◽  
Bernd Grohe ◽  
...  

<b><i>Objective:</i></b> Kidney stones are a common medical condition that is increasing in prevalence worldwide. Approximately, ∼80% of urinary calculi are composed of calcium oxalate (CaOx). There is a growing interest toward identifying therapeutic compounds that can inhibit the formation of CaOx crystals. However, some chemicals (e.g., antibiotics and bacterial metabolites) may directly promote crystallization. Current knowledge is limited regarding crystal promoters and inhibitors. Thus, we have developed an in vitro gel-based diffusion model to screen for substances that directly influence CaOx crystal formation. <b><i>Materials and Methods:</i></b> We used double diffusion of sodium oxalate and calcium chloride-loaded paper disks along an agar medium to facilitate the controlled formation of monohydrate and dihydrate CaOx crystals. A third disk was used for the perpendicular diffusion of a test substance to assess its influence on CaOx crystal formation. <b><i>Results:</i></b> We confirmed that citrates and magnesium are effective inhibitors of CaOx crystals. We also demonstrated that 2 strains of uropathogenic <i>Escherichia coli</i> are able to promote crystal formation. While the other tested uropathogens and most antibiotics did not change crystal formation, ampicillin was able to reduce crystallization. <b><i>Conclusion:</i></b> We have developed an inexpensive and high-throughput model to evaluate substances that influence CaOx crystallization.


Author(s):  
Yun Ji ◽  
Shuting Fang ◽  
Ying Yang ◽  
Zhenlong Wu

Abstract High oxalate consumption has been recognized as a risk factor for renal calcium oxalate stones in companion animals (dogs and cats). However, the cellular signaling involved in oxalate-induced dysfunction in renal tubular epithelial cells remains not fully elucidated. In this study, Mardin-Darby canine kidney (MDCK) cells, an epithelial cell line derived from canine kidney tubule, were tested for cell proliferation activity and barrier function after being exposed to sodium oxalate (NaOx). Further, the involvement of Wnt/β-catenin in NaOx-induced renal epithelial barrier dysfunction was evaluated. MDCK cells treated with NaOx exhibited reduction in cell proliferation and migration. Besides, NaOx exposure led to a decrease in transepithelial electrical resistance (TEER) and an increase in paracellular permeability. The deleterious effects of NaOx on epithelial barrier function were related to the suppressed abundance of tight junction proteins including zonula occludens (ZOs), occludin, and claudin-1. Of note, protein levels of β-catenin and p-β-catenin (Ser552) in MDCK cells were repressed by NaOx, indicating inhibitory effects on Wnt/β-catenin signaling. An inhibition of GSK-3β enhanced the abundance of β-catenin and p-β-catenin (Ser552), and protected against epithelial barrier dysfunction in NaOx-treated MDCK cells. The results revealed a critical role of Wnt/β-catenin signaling in the epithelial barrier function of MDCK cells. Activation of Wnt/β-catenin signaling might be a potentially therapeutic target for the treatment of oxalate-linked renal stones.


Antioxidants ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1464
Author(s):  
Chia-Fang Wu ◽  
Chia-Chu Liu ◽  
Yi-Chun Tsai ◽  
Chu-Chih Chen ◽  
Ming-Tsang Wu ◽  
...  

Chronic kidney disease (CKD) usually causes devastating healthy impacts on patients. However, the causes affecting the decline of kidney function are not fully revealed, especially the involvement of environmental pollutants. We have revealed that exposure to melamine, a ubiquitous chemical in daily life, is linked to adverse kidney outcomes. Hyperoxaluria that results from exposure to excessive oxalate, a potentially nephrotoxic terminal metabolite, is reportedly associated with CKD. Thus, we explored whether interaction of these two potential nephrotoxicants could enhance kidney injury. We established a renal proximal tubular HK-2 cell model and a Sprague–Dawley rat model of coexposure to melamine with sodium oxalate or hydroxy-L-proline to investigate the interacting adverse effects on kidneys. Melamine and oxalate coexposure enhanced the levels of reactive oxygen species, lipid peroxidation and oxidative DNA damage in the HK-2 cells and kidney tissues. The degrees of tubular cell apoptosis, tubular atrophy, and interstitial fibrosis were elevated under the coexposed condition, which may result from the diminishment of Nrf2 antioxidative capacity. To conclude, melamine and oxalate coexposure aggravates renal tubular injury via impairment of antioxidants. Accumulative harmful effects of exposure to multiple environmental nephrotoxicants should be carefully investigated in the etiology of CKD progression.


2021 ◽  
Vol 17 (9) ◽  
pp. 1806-1811
Author(s):  
Xiangling Ren ◽  
Meijia Liu ◽  
Ming Tang ◽  
Longfei Tan ◽  
Changhui Fu ◽  
...  

Lactate dehydrogenase (LDH) is one of key enzymes in glucose metabolism pathway, which plays a critical role in cell metabolism. Inhibition of LDH can inhibit glycolysis process, thereby inhibiting the occurrence and development of tumor cells. Two kinds of LDH inhibitors, apigenin and emodin, were obtained by testing the IC50 of several natural products in LDH enzyme reaction. The IC50 of apigenin was about 1/3 of LDH inhibitor sodium oxalate. A new method to evaluate the performance of LDH inhibitors based on CdTe QDs was established at the same time, which provides a new idea for research on LDH enzyme inhibitors.


2021 ◽  
Vol 22 (17) ◽  
pp. 9244
Author(s):  
Thayane Crestani ◽  
Renato O. Crajoinas ◽  
Leonardo Jensen ◽  
Leno L. Dima ◽  
Perrine Burdeyron ◽  
...  

Chronic kidney disease (CKD) is a worldwide public health issue affecting 14% of the general population. However, research focusing on CKD mechanisms/treatment is limited because of a lack of animal models recapitulating the disease physiopathology, including its complications. We analyzed the effects of a three-week diet rich in sodium oxalate (OXA diet) on rats and showed that, compared to controls, rats developed a stable CKD with a 60% reduction in glomerular filtration rate, elevated blood urea levels and proteinuria. Histological analyses revealed massive cortical disorganization, tubular atrophy and fibrosis. Males and females were sensitive to the OXA diet, but decreasing the diet period to one week led to GFR significance but not stable diminution. Rats treated with the OXA diet also displayed classical CKD complications such as elevated blood pressure and reduced hematocrit. Functional cardiac analyses revealed that the OXA diet triggered significant cardiac dysfunction. Altogether, our results showed the feasibility of using a convenient and non-invasive strategy to induce CKD and its classical systemic complications in rats. This model, which avoids kidney mass loss or acute toxicity, has strong potential for research into CKD mechanisms and novel therapies, which could protect and postpone the use of dialysis or transplantation.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Fengxiao Li ◽  
Bin Tang ◽  
Mingfu Zhao ◽  
Xinyu Hu ◽  
Shenghui Shi ◽  
...  

The turbidity interference caused by suspended particles in water seriously affects the accuracy of ultraviolet-visible spectroscopy in detecting water quality chemical oxygen demand. Based on this, the application of ultraviolet-visible spectroscopy to detect water quality chemical oxygen demand usually requires physical and mathematical methods to correct the spectral baseline interference caused by turbidity. Because of the slow response speed and unstable compensation effect of traditional correction methods, this paper proposes to use a compressed sensing algorithm to perform baseline correction and achieve good results. In the experiment, we selected formazin turbidity solution and sodium oxalate standard solution and carried out the research on the algorithm of turbidity correction for detecting chemical oxygen demand of water quality by ultraviolet-visible spectroscopy. The experiment obtains the absorption spectra of different concentrations of formazine turbidity solutions and the same concentration of sodium oxalate with different turbidity standard solutions at 210∼845 nm and analyzes the nonlinear effect of absorbance on turbidity. This article uses standard solution experiments to explore the compressed sensing theory for turbidity correction, and through the correction of the absorption spectrum of the actual water sample, it verifies the feasibility of the compression theory for turbidity correction. The method effectively corrects the baseline shift or drift of the water quality ultraviolet-visible absorption spectrum caused by suspended particles, while retaining the absorption characteristics of the ultraviolet spectrum, and it can effectively improve the accuracy and accuracy of the ultraviolet-visible spectroscopy water quality chemical oxygen demand detection.


2021 ◽  
Vol 4 (3) ◽  
pp. 44
Author(s):  
Mubarak Abdulkarim ◽  
Haruna M. Grema ◽  
Ibrahim H. Adamu ◽  
Daniela Mueller ◽  
Melanie Schulz ◽  
...  

Laser diffraction spectrometry allows for efficiently obtaining high-resolution grain size data. However, pretreatment and dispersion of aggregates in sediment samples are essential pre-requisites for acquiring accurate results using this method. This study evaluates the effectiveness of five dispersing agents in deflocculating the investigated fluvial sediments and the resulting grain size distribution obtained by laser diffraction spectrometry. We also examine the ability of the different dispersing agents to deflocculate sediment samples treated by thermal combustion. Distilled water presented a low efficiency in deflocculating the samples and yielded a near-zero clay content for samples with an expected clay content. The other chemical dispersants were effective in dispersing aggregates and yielding clay, albeit with different efficiencies. Calgon had the highest dispersing ability, followed closely by sodium tripolyphosphate. The performance of chemical treatment with sodium oxalate approaches that of sodium tripolyphosphate. However, it leads to the formation of precipitates in the samples, obscuring the actual grain size data. Sodium pyrophosphate derived the least amount of deflocculation among the four chemical dispersants. Furthermore, all the chemical dispersants were found to be ineffective in dispersing aggregates in samples treated by thermal combustion.


Sign in / Sign up

Export Citation Format

Share Document