The Urinary F1 Activation Peptide of Human Prothrombin is a Potent Inhibitor of Calcium Oxalate Crystallization in Undiluted Human Urine in Vitro

1995 ◽  
Vol 89 (5) ◽  
pp. 533-541 ◽  
Author(s):  
Rosemary L. Ryall ◽  
Phulwinder K. Grover ◽  
Alan M. F. Stapleton ◽  
Dianne K. Barrell ◽  
Yulu Tang ◽  
...  

1. The urinary F1 activation peptide of prothrombin is the predominant protein incorporated into calcium oxalate crystals precipitated from human urine. The aim of this study was to examine the effect of pure urinary prothrombin F1 on calcium oxalate crystallization in human urine. 2. Urinary prothrombin F1 was purified from demineralized calcium oxalate crystals precipitated from human urine, and its effects on calcium oxalate crystallization induced by addition of an oxalate load were tested in undiluted, ultrafiltered urine from healthy men, at final concentrations of 0 to 10 mg/l. 3. Urinary prothrombin F1 did not affect the amount of oxalate required to induce crystallization, but the volume of material deposited increased in proportion to increasing concentrations of urinary prothrombin F1. However, the mean particle size decreased in reverse order: this was confirmed by scanning electron microscopy, which showed it to be the result of a reduction in crystal aggregation rather than in the size of individual crystals. Analysis of 14C-oxalate data revealed a dose-dependent decrease in calcium oxalate deposition with an increase in urinary prothrombin F1 concentration, indicating that the increase in particle volume recorded by the Coulter Counter resulted from inclusion of urinary prothrombin F1 into the crystalline architecture, rather than increased deposition of calcium oxalate. 4. It was concluded that urinary prothrombin F1 may be an important macromolecular determinant of stone formation.

2021 ◽  
Vol 12 (5) ◽  
pp. 5836-5844

Calcium oxalate is the most common type of urolithiasis. The crystallization process includes nucleation, growth, and the aggregation of crystals. This study has used Dolichos biflorus seeds as a functional beverage to explore the role of its bioactive substances on the crystallization process of calcium oxalate in managing urolithiasis. A human urine model of in vitro calcium oxalate crystals was used in the study. Phytochemical screening of Functional beverage of Dolichos biflorus seeds was performed, and antioxidant activity was evaluated by measuring DPPH radical-scavenging activity, reducing power assay, and Hydrogen peroxide scavenging activity. Functional beverage of Dolichos biflorus seeds inhibited crystallization process by reducing aggregation of calcium oxalate crystals. The reduction in crystals aggregation helps prevent urolithiasis by keeping the crystals dispersed in the urine, controlling their size, and facilitating expulsion from the urinary tract. The results showed that the Functional beverage of Dolichos biflorus seeds has a significant quantity of flavonoids, glycosides, etc., and also possesses a significant antioxidant activity as evaluated by employing different antioxidant assays. Therefore, our findings suggested that the functional beverage of Dolichos biflorus seeds exhibited antiurolithiatic activity through inhibition of the crystallization process of the calcium oxalate process and significant antioxidant potential.


1974 ◽  
Vol 47 (1) ◽  
pp. 13-22 ◽  
Author(s):  
W. G. Robertson ◽  
M. Peacock ◽  
R. W. Marshall ◽  
F. Knowles

1. The volume, size and type of calcium oxalate crystals excreted in the urine of a group of patients with recurrent ‘idiopathic’ stones were studied on a controlled basal diet, after an oral supplement of sodium oxalate and after oral administration of ethane-1-hydroxy-1,1-diphosphonate (EHDP) for 4 weeks. 2. Before administration of EHDP the stone-formers passed the large crystals and aggregates of calcium oxalate dihydrate characteristic of recurrent calcium oxalate stone-formers. For the same level of urine saturation and crystalluria EHDP caused a significant reduction in the proportion of large crystals and aggregates excreted. Studies by light-microscopy confirmed that EHDP caused a striking change in the size and habit of calcium oxalate crystals in some but not all of the urine samples examined. 3. The decrease in average crystal size during the administration of EHDP was attributed to the observed increase in the ability of urine to inhibit the growth and aggregation of calcium oxalate crystals as measured by a growth system in vitro. 4. The possible use of EHDP as a therapeutic agent in the treatment of calcium oxalate stone-formation is discussed.


1972 ◽  
Vol 43 (4) ◽  
pp. 499-506 ◽  
Author(s):  
W. G. Robertson ◽  
M. Peacock

1. The particle size distributions of calcium oxalate crystals were measured at 37°C in fresh urine from recurrent, idiopathic stone-formers and their controls under the same conditions of dietary and fluid intake. The crystals excreted by the controls were small and belonged to a unimodal distribution, whereas those excreted by the stone-formers belonged to a distribution which contained a second peak of much larger particles. The proportion of large crystals in the urines of the stone-formers was significantly higher than in the urines of the controls. 2. The difference in the proportion of large particles passed by the two groups was accentuated by adding a small quantity of sodium oxalate to their diets. Whereas the controls continued to excrete only small crystals of calcium oxalate, the stone-formers passed most of their crystals as large particles. 3. Further investigations showed that the urines of the controls contained a potent inhibitor of the growth and aggregation of calcium oxalate crystals in vitro and that the inhibitor was deficient in the urines of the recurrent stone-formers. 4. It is suggested that the inhibitor in normal urine may allow calcium oxalate to be passed harmlessly in the form of small particles, whereas the lower inhibitory activity in the urines of the recurrent stone-formers is insufficient to prevent the growth of the primary crystals into the large aggregates seen in these urines. By blocking the formation of abnormally large crystals and aggregates the inhibitor may therefore play an important role in preventing crystalluria leading to stone formation.


Crystals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 735
Author(s):  
Ana Petrović ◽  
Tomislav Kizivat ◽  
Ines Bilić Ćurčić ◽  
Robert Smolić ◽  
Martina Smolić

Urolithiasis is a multifactorial disease with a high incidence and high recurrence rate, characterized by formation of solid deposits in the urinary tract. The most common type of these stones are calcium oxalate stones. Calcium oxalate crystals can, in hyperoxaluric states, interact with renal epithelial cells, causing injury to the renal epithelia. Pathogenesis of urolithiasis is widely investigated, but underlying mechanisms are still not completely clarified. In vitro models offer insight into molecular processes which lead to renal stone formation and are significant for evaluation of prophylactic and therapeutic management of patients with urolithiasis. In this review, we summarize recently published data from in vitro studies investigating interactions of calcium oxalate crystals with renal epithelial cell lines, anti-urolithiatic mechanisms, and the results from studies exploring possible therapeutic and prophylactic options for calcium oxalate urolithiasis in cell cultures.


2012 ◽  
Vol 187 (4S) ◽  
Author(s):  
Atsushi Okada ◽  
Takahiro Yasui ◽  
Kazumi Taguchi ◽  
Yasuhiko Hirose ◽  
Kazuhiro Niimi ◽  
...  

Author(s):  
Sathish R ◽  
Jeyabalan G

 Objective: The present study was to demonstrate the in vitro anti-lithiatic effect of Ipomoea batatas (Convolvulaceae) leaves and tuberous roots.Methods: The obtained ethanolic extract of I. batatas leaves and tuberous roots (EIBL and EIBR) and aqueous extract of I. batatas leaves and roots (AIBL and AIBR) were used for this in vitro study. The dissolution method of calcium oxalate by titrimetry method and calcium phosphate by colorimetric method was studied. Nucleation and aggregation of calcium oxalate crystals were determined by a spectrophotometric assay.Results: In the estimation of calcium oxalate by titrimetry method, the I. batatas leaves and roots have very significant (p<0.01) capability to dissolve calcium oxalate. Percentage dissolution of calcium oxalate crystals was found to be 37.53%, 22.74%, 39.74%, and 24.28% for EIBL, AIBL, EIBR, and AIBR, respectively. In the estimation of calcium phosphate by colorimetric method, the percentage dissolution of calcium phosphate crystals by EIBL, AIBL, EIBR, and AIBR was found to be 67.15%, 43.17%, 76.74%, and 47.96%, respectively. The I. batatas leaves and roots were significantly (p<0.01) dissolved calcium phosphate also. The results were clearly shown that I. batatas extracts significantly (p<0.01) inhibited both nucleation and aggregation of calcium oxalate crystals by concentration-dependent manner. The maximum percent inhibition of calcium oxalate nucleation by EIBL, AIBL, EIBR, and AIBR was found to be 59.09%, 50.0%, 84.09%, and 47.73%, respectively, at 1000 μg/ml. The EIBL, AIBL, EIBR, and AIBR were inhibited calcium oxalate aggregation by 63.46%, 36.54%, 84.61%, and 42.3%, respectively, at 1000 μg/ml.Conclusions: The results clearly indicate that I. batatas leaves and tuberous roots were found to express in vitro anti-lithiatic potential.


Sign in / Sign up

Export Citation Format

Share Document