basal diet
Recently Published Documents


TOTAL DOCUMENTS

2346
(FIVE YEARS 1136)

H-INDEX

54
(FIVE YEARS 8)

2023 ◽  
Vol 83 ◽  
Author(s):  
F. Gul ◽  
B. Ahmad ◽  
S. Afzal ◽  
A. Ullah ◽  
S. Khan ◽  
...  

Abstract The supplementation of Selenium-enriched probiotics is effective in reducing oxidative stress and maintaining meat quality stability in broiler chicken especially under heat stress. An experimental study was conducted to perform Comparative analysis of Selenium yeast with inorganic Se in broilers under heat stress. A total of 120 broilers chicks of one day were assigned to 4 groups each consisting 30 chicks fed on same basal diet but different selenium sources. The basal diet of group D1 was not supplemented with Se source (Negative control), group D2 basal diet was supplemented with inorganic selenium (Sodium selenite 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase), group D3 basal diet was supplemented with commercially available organic selenium (Seleno-methionine 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase) and group D4 basal diet was supplemented with self-developed organic selenium (Se-enriched yeast 0.22mg/Kg starter phase and 0.15mg/Kg finisher phase). The performance parameters i.e. feed intake (FI), live body weight (BW) and FCR were not significantly (p>0.05) effected by selenium supplementation in the starter phase but were significantly (p<0.05) effected in the finisher phase. Selenium supplementation significantly (p<0.05) effected serum Se level in different supplemented groups. Higher serum Se value (58.20±0.06) was recorded in D4 group. Similarly significantly lower selenium value was recorded for D4 and higher was recorded for D1 (11.36±0.08). However lower serum Paraoxonase (PON) value was recorded for D4 (13.24±0.01) and higher for D1 (13.33±0.03). Comparatively self-developed Se enriched yeast increased the Se accumulation and improved antioxidant system. Glutathione peroxidase (GPx) was found higher in D4 (12.333±0.03) followed by D3, D2 and D1 respectively. Whereas superoxide dismutase (SOD) was significantly lower (p<0.05) in D4 (0.1437±0.003) followed by D3 (0.1457±0.002). Selenium supplementation increased the bird’s survival rate. Birds fed on Se enriched yeast showed higher Se deposition and better antioxidant capacity as compared to other sources of selenium. Se-enriched yeast displayed an improved result on Se deposition in tissues, and oxidative capacity, meat tenderness and immune response level as compared to other sources of selenium.


2023 ◽  
Vol 83 ◽  
Author(s):  
M. U. Asghar ◽  
A. Rahman ◽  
Z. Hayat ◽  
M. K. Rafique ◽  
I. H. Badar ◽  
...  

Abstract The current study aimed to determine the effects of different levels of Zingiber officinale as a herbal feed additive on growth performance, carcass characteristic, serum biochemistry, total bacterial count (TBC), gut morphology, and immunological parameters of broilers. A total of 1500, day-old broiler chicks (Hubbard) were equally accredited to five treatment groups, each with six replicates (50 birds/replicate). Five experimental diets were prepared using basal diet i.e. with antibiotics positive control (PC), 3 g/kg ginger (group A), 6 g/kg ginger (group B), 9 g/kg ginger (group C) and without antibiotics negative control (NC). Group A and C showed significantly (p<0.05) higher feed intake (FI) as compared to other groups. Group C showed significantly (p<0.05) lower Total bacterial count (TBC) followed by group B as compared to NC. Carcass characteristics showed non-significant effects among different treatments. Mean villi length and width were significantly (p <0.05) higher in all ginger supplemented groups as compared to the control groups. Blood serum parameters including cholesterol, triglycerides, and low-density lipoproteins (LDL) were significantly (p<0.05) lower in groups B and C in comparison with the control groups. Whereas high-density lipoproteins (HDL) was significantly higher in group B as compared to the others. In conclusion, ginger supplementation @0.6% in the basal diet significantly improved growth performance and gut morphometry of broilers. It also showed a positive impact on cholesterol, triglycerides and gut microbes. Therefore, ginger could be a better substitute for antibiotic growth promoters.


2022 ◽  
Vol 8 ◽  
Author(s):  
Qing Duanmu ◽  
Bie Tan ◽  
Jing Wang ◽  
Bo Huang ◽  
Jianjun Li ◽  
...  

Dietary supplementation with aromatic amino acids (AAAs) has been demonstrated to alleviate intestinal inflammation induced by lipopolysaccharide (LPS) in the piglets. But the mechanism of AAA sensing and utilization under inflammatory conditions is not well-understood. The study was conducted with 32 weanling piglets using a 2 × 2 factorial arrangement (diet and LPS challenge) in a randomized complete block design. Piglets were fed as basal diet or the basal diet supplemented with 0.16% tryptophan (Trp), 0.41% phenylalanine (Phe), and 0.22% tyrosine (Tyr) for 21 days. The results showed that LPS treatment significantly reduced the concentrations of cholecystokinin (CCK) and total protein but increased leptin concentration, the activities of alanine transaminase, and aspartate aminotransferase in serum. Dietary supplementation with AAAs significantly increased the serum concentrations of CCK, peptide YY (PYY), and total protein but decreased the blood urea nitrogen. LPS challenge reduced the ileal threonine (Thr) digestibility, as well as serum isoleucine (Ile) and Trp concentrations, but increased the serum concentrations of Phe, Thr, histidine (His), alanine (Ala), cysteine (Cys), and serine (Ser) (P &lt; 0.05). The serum-free amino acid concentrations of His, lysine (Lys), arginine (Arg), Trp, Tyr, Cys, and the digestibilities of His, Lys, Arg, and Cys were significantly increased by feeding AAA diets (P &lt; 0.05). Dietary AAA supplementation significantly increased the serum concentrations of Trp in LPS-challenged piglets (P &lt; 0.05). In the jejunal mucosa, LPS increased the contents of Ala and Cys, and the mRNA expressions of solute carrier (SLC) transporters (i.e., SLC7A11, SLC16A10, SLC38A2, and SLC3A2), but decreased Lys and glutamine (Gln) contents, and SLC1A1 mRNA expression (P &lt; 0.05). In the ileal mucosa, LPS challenge induced increasing in SLC7A11 and SLC38A2 and decreasing in SLC38A9 and SLC36A1 mRNA expressions, AAAs supplementation significantly decreased mucosal amino acid (AA) concentrations of methionine (Met), Arg, Ala, and Tyr, etc. (P &lt; 0.05). And the interaction between AAAs supplementation and LPS challenge significantly altered the expressions of SLC36A1 and SLC38A9 mRNA (P &lt; 0.05). Together, these findings indicated that AAAs supplementation promoted the AAs absorption and utilization in the small intestine of piglets and increased the mRNA expressions of SLC transports to meet the high demands for specific AAs in response to inflammation and immune response.


2022 ◽  
Vol 8 ◽  
Author(s):  
Meijun Li ◽  
Wei Tang ◽  
Peng Liao ◽  
Yunhu Li

This study was conducted to evaluate the effects of dietary supplementation of different recommended levels of Cu and Zn on antioxidant capacity, tissue mineral status, minerals excretion, meat quality, digestive enzyme activity, and metal transporters in finishing pigs. A total of 120 pigs (with an average initial body weight (BW) of 70.0 ± 2.1 kg) were randomly divided into four treatments: (1) basal diet without added Cu or Zn (control), (2) basal diet+35 mg cupreous N-carbamylglutamate chelate (NCG-Cu) +150 mg zinc-methionine chelate (Zn-Met) (AC), (3) basal diet + 3.0 mg of NCG-Cu + 43 mg Zn-Met (CN), and (4) basal diet + 3.5 mg NCG-Cu + 50 mg Zn-Met (NRC100). Pig growth performance was not affected by the level of Cu or Zn. Among the four treatments, the AC treatment had the highest concentration (P &lt; 0.05) of glutathione peroxidase (GSH-Px). Pigs fed the AC diet had the highest (P &lt; 0.05) liver Zn, fecal Cu, and fecal Zn among the four treatments. The protein levels of trypsin and aminopeptidase N (APN) in the intestinal mucosa showed their highest levels (P &lt; 0.05) in the NRC100 and AC treatments. The mRNA levels of trypsinogen and APN were significantly up-regulated (P &lt; 0.05) in the AC, CN, and NRC100 treatments compared with the control. The mRNA levels for the Zn transporter genes SLC30A1 (ZnT1) and SLC30A2 (ZnT2) were significantly up-regulated (P &lt; 0.05) in the AC treatment, and the mRNA levels for SLC39A4 (ZIP4) and metallothionein 1 (MT) in the AC, CN, and NRC100 treatments were significantly up-regulated (P &lt; 0.05) compared with the control. Meat quality were not affected (P &gt; 0.05) by the different recommended levels of Cu and Zn. These results indicated that the supplemental Cu and Zn levels routinely used in AC diets in Chinese commercial feed enterprises should be reduced.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sajid Ur Rahman ◽  
Haiyan Gong ◽  
Rongsheng Mi ◽  
Yan Huang ◽  
Xiangan Han ◽  
...  

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p &lt; 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p &lt; 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p &lt; 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p &lt; 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


2022 ◽  
Vol 12 ◽  
Author(s):  
Kang Yang ◽  
Xiaolin Deng ◽  
Shiyan Jian ◽  
Meiyu Zhang ◽  
Chaoyu Wen ◽  
...  

Early-life exposure to environmental stress disrupts the gut barrier and leads to inflammatory responses and changes in gut microbiota composition. Gallic acid (GA), a natural plant polyphenol, has received significant interest for its antioxidant, anti-inflammatory, and antimicrobial properties that support the maintenance of intestinal health. To assess whether dietary supplementation of GA alleviates environmental stress, a total of 19 puppies were randomly allocated to the following three dietary treatments for 2 weeks: 1) basal diet (control (CON)); 2) basal diet + transportation (TS); and 3) basal diet with the addition of 500 mg/kg of GA + transportation (TS+GA). After a 1-week supplementation period, puppies in the TS and TS+GA groups were transported from a stressful environment to another livable location, and puppies in the CON group were then left in the stressful environment. Results indicated that GA markedly reduced the diarrhea rate in puppies throughout the trial period and caused a moderate decline of serum cortisol and HSP-70 levels after transportation. Also, GA alleviated the oxidative stress and inflammatory response caused by multiple environmental stressors. Meanwhile, puppies fed GA had a higher abundance of fecal Firmicutes and Lactobacillus and lower Proteobacteria, Escherichia–Shigella, and Clostridium_sensu_stricto_1 after transportation. As a result, the TS+GA group had the highest total short-chain fatty acids and acetic acid. Also, the fecal and serum metabolomics analyses revealed that GA markedly reversed the abnormalities of amino acid metabolism, lipid metabolism, carbohydrate metabolism, and nucleotide metabolism caused by stresses. Finally, Spearman’s correlation analysis was carried out to explore the comprehensive microbiota and metabolite relationships. Overall, dietary supplementation of GA alleviates oxidative stress and inflammatory response in stressed puppies by causing beneficial shifts on gut microbiota and metabolites that may support gut and host health.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Zhaoyue Men ◽  
Meng Cao ◽  
Yuechan Gong ◽  
Lun Hua ◽  
Ruihao Zhang ◽  
...  

Abstract Background Dietary fiber (DF) is often eschewed in swine diet due to its anti-nutritional effects, but DF is attracting growing attention for its reproductive benefits. The objective of this study was to investigate the effects of DF intake level on oocyte maturation and uterine development, to determine the optimal DF intake for gilts, and gain microbial and metabolomic insight into the underlying mechanisms involved. Methods Seventy-six Landrace × Yorkshire (LY) crossbred replacement gilts of similar age (92.6 ± 0.6 d; mean ± standard deviation [SD]) and body weight (BW, 33.8 ± 3.9 kg; mean ± SD) were randomly allocated to 4 dietary treatment groups (n = 19); a basal diet without extra DF intake (DF 1.0), and 3 dietary groups ingesting an extra 50% (DF 1.5), 75% (DF 1.75), and 100% (DF 2.0) dietary fiber mixture consisting of inulin and cellulose (1:4). Oocyte maturation and uterine development were assessed on 19 d of the 2nd oestrous cycle. Microbial diversity of faecal samples was analysed by high-throughput pyrosequencing (16S rRNA) and blood samples were subjected to untargeted metabolomics. Results The rates of oocytes showing first polar bodies after in vitro maturation for 44 h and uterine development increased linearly with increasing DF intake; DF 1.75 gilts had a 19.8% faster oocyte maturation rate and a 48.9 cm longer uterus than DF 1.0 gilts (P <  0.05). Among the top 10 microbiota components at the phylum level, 8 increased linearly with increasing DF level, and the relative abundance of 30 of 53 microbiota components at the genus level (> 0.1%) increased linearly or quadratically with increasing DF intake. Untargeted metabolic analysis revealed significant changes in serum metabolites that were closely associated with microbiota, including serotonin, a gut-derived signal that stimulates oocyte maturation. Conclusions The findings provide evidence of the benefits of increased DF intake by supplementing inulin and cellulose on oocyte maturation and uterine development in gilts, and new microbial and metabolomic insight into the mechanisms mediating the effects of DF on reproductive performance of replacement gilts.


2022 ◽  
Vol 8 ◽  
Author(s):  
Lang Zhang ◽  
Yongxing Hong ◽  
Yuying Liao ◽  
Kui Tian ◽  
Haodong Sun ◽  
...  

This study aimed to evaluate the effects of dietary Lasia spinosa Thw. (LST) powder supplementation on growth performance, blood metabolites, antioxidant status, intestinal morphology, and cecal microbiome in broiler chickens. A total of 400 1-day-old male Guangxi partridge broilers (initial body weight: 42.52 ± 0.06 g) were randomly allotted to 4 dietary treatments: LST0 group (a basal diet), LST1 group (a basal diet with 1% LST powder), LST2 group (a basal diet with 2% LST powder), LST4 group (a basal diet with 4% LST powder), 10 replicates for each treatment, and 10 broilers in each treatment group. Results indicated that the average daily feed intake of broilers during 22–42 days and the average daily gain of chickens during 1–42 days significantly increased by dietary supplementation of LST powder (p &lt; 0.01), while the feed conversion ratio during the overall periods was decreased by dietary supplementation of LST powder (p &lt; 0.01). Except for the levels of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px) in liver (p &gt; 0.05), the levels of SOD, catalase (CAT) and GSH-Px in serum, liver, and breast muscle were significantly increased in the LST supplemented groups (p &lt; 0.05), while the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) in serum, liver, and breast muscle were significantly decreased in the LST supplemented groups (p &lt; 0.05). Furthermore, the levels of triglyceride (TG) and low-density lipoprotein cholesterol (LDL-C) were significantly decreased by the addition of dietary LST powder (p &lt; 0.01), while the levels of HDL-C, Ca, Fe, Mg, and P were linearly increased by the addition of dietary LST powder (p &lt; 0.01). With respect to the gut morphometric, crypt depth was significantly decreased by LST supplementation (p &lt; 0.05), while villus height and the ratio of villus height to crypt depth were notably increased by LST supplementation (p &lt; 0.05). Sequencing of 16S ribosomal RNA (16S rRNA) from the cecal contents of broilers revealed that the composition of the chicken gut microbiota was altered by LST supplementation. The α-diversity of microbiota in broilers was increased (p &lt; 0.05) in the LST1 group, but was decreased (p &lt; 0.05) in the LST2 and LST4 groups compared with the LST0 group. The differential genera enriched in the LST1 group, such as Bacillus, Odoribacter, Sutterella, Anaerofilum, Peptococcus, were closely related to the increased growth performance, antioxidant status, intestinal morphology, Ca, Mg, and reduced blood lipid in the treated broilers.


2022 ◽  
Vol 8 ◽  
Author(s):  
Kaibin Mo ◽  
Jing Li ◽  
Fenfen Liu ◽  
Ying Xu ◽  
Xianhui Huang ◽  
...  

Essential oils (EOs) have long been considered an alternative to antibiotics in the breeding industry. However, they are unstable and often present unpleasant odors, which hampers their application. Microencapsulation can protect the active gradients from oxidation and allow them to diffuse slowly in the gastrointestinal tract. The purpose of this study was to investigate the effect of microencapsulation technology on the biological function of EOs and the possibility of using microencapsulate EOs (MEEOs) as an alternative to antibiotics in weaning piglets. First, we prepared MEEOs and common EOs both containing 2% thymol, 5% carvacrol and 3% cinnamaldehyde (w/w/w). Then, a total of 48 weaning piglets were randomly allotted to six dietary treatments: (1) basal diet; (2) 75 mg/kg chlortetracycline; (3) 100 mg/kg common EOs; (4) 500 mg/kg common EOs; (5) 100 mg/kg MEEOs; and (6) 500 mg/kg MEEO. The trial lasted 28 days. The results showed that piglets in the 100 mg/kg MEEOs group had the lowest diarrhea index during days 15–28 (P &lt; 0.05). In addition, 100 mg/kg MEEOs significantly alleviated intestinal oxidative stress and inflammation (P &lt; 0.05), whereas 500 mg/kg common EOs caused intestinal oxidative stress (P &lt; 0.05) and may lead to intestinal damage through activation of inflammatory cytokine response. MEEOs (100 mg/kg) significantly reduced the ratio of the relative abundance of potential pathogenic and beneficial bacteria in the cecum and colon (P &lt; 0.05), thus contributing to the maintenance of intestinal health. On the other hand, chlortetracycline caused an increase in the ratio of the relative abundance of potential pathogenic and beneficial bacteria in the colon (P &lt; 0.05), which could potentially have adverse effects on the intestine. The addition of a high dose of MEEOs may have adverse effects on the intestine and may lead to diarrhea by increasing the level of colonic acetic acid (P &lt; 0.05). Collectively, the results suggest that microencapsulation technology significantly promotes the positive effect of EOs on the intestinal health of weaning piglets and reduces the adverse effect of EOs, and 100 mg/kg MEEOs are recommended as a health promoter in piglets during the weaning period.


Author(s):  
C Lee ◽  
J E Copelin ◽  
M T Socha

Abstract Three experiments were conducted with growing wethers to evaluate apparent excretion and retention of Zn from various sources. In Exp. 1 and 2, Zn-ethylene diamine (ZE), Zn hydroxychloride (ZHYD), Zn-lysine/glutamate (ZAA), and Zn-glycinate (ZG) were used and ZnSO4 (ZS), Zn hydroxychloride (ZHYD), Zn-lysine/glutamate (ZAA), and Zn-glycinate (ZG) were used in Exp. 3. In Exp. 1, 8 wethers were used in a replicated 4 × 4 Latin Square design. In Exp. 2 and 3, 40 wethers were used in a randomized block design. In Exp. 1, each period (total 4 periods) consisted of 14-day diet adaptation and 4 days of total collection of feces and urine. In Exp. 2 and 3, wethers received a basal diet for 14 days and received experimental diets for 9 days (diet adaptation), followed by 4 days of total collection of feces and urine. Total collection was conducted in wooden metabolic cages. All data were analyzed using the MIXED procedure of SAS as a Latin square design for Exp. 1 and a completed randomized block design for Exp. 2 and 3. In all experiments, dry matter intake did not differ among treatments except that it tended to be different in Exp. 2. In Exp. 1, no difference in Zn excretion (88%) and retention (11%) as proportion of Zn intake was observed among Zn sources. In Exp. 2, total tract digestibility of crude protein was greater (P &lt; 0.01) for ZAA than ZE and ZG (82.0 vs. 79.1 and 77.8%, respectively) and greater (P &lt; 0.01) for ZHYD than ZG (80.2 vs. 77.8%). However, total tract digestibility of neutral detergent fiber was low (on average 16%) for all treatments with no difference among treatments in Exp. 2. Apparent excretion and retention of Zn as proportion of Zn intake did not differ among treatments, and Zn retention (~1.4% of Zn intake) was very low for all treatments. In Exp. 3, ZHYD and ZAA had greater retention of Zn (17.8 vs. 1.5%; P = 0.01) than ZG. Fecal Zn excretion was greater (97.3 vs. 81.2%; P = 0.01) for ZG vs. ZHYD and ZAA, and Zn retention for ZG was only 1.5% of Zn intake. In conclusion, potential increases in Zn absorption and retention were observed for ZHYD and ZAA compared with ZS and ZG in Exp. 3 and these differences were not found in Exp. 1 and 2. Experiment 1 used a Latin square design and Exp. 2 used a diet containing largely undigestible fiber. These experimental conditions may have affected Zn metabolism in wethers. Inconsistent results on Zn balance for ZG among the experiments warrant further studies regarding its bioavailability.


Sign in / Sign up

Export Citation Format

Share Document