Dose-Dependent Effects of Meclofenamate on Peripheral Vasculature of Conscious Rabbits

1983 ◽  
Vol 64 (5) ◽  
pp. 471-474 ◽  
Author(s):  
R. A. Banks ◽  
L. J. Beilin ◽  
J. Soltys

1. Changes in systemic haemodynamics and organ blood flow were measured in conscious rabbits after various doses of intravenous sodium meclofenamate, an inhibitor of prostaglandin cyclo-oxygenase. 2. Meclofenamate had no effect on arterial pressure or cardiac output but caused a dose-dependent fall in renal blood flow. 3. Meclofenamate also reduced adrenal perfusion but, in contrast, caused a dose-dependent increase in blood flow to the brain, bronchial and hepatic circulation and to the testis. No effect was demonstrated on other organs studied. 4. The effect on the cerebral circulation was observed at the lowest dose of meclofenamate (0.75 mg/kg). Higher total doses were necessary for an effect on the renal and bronchial (3 mg/kg) and testicular and hepatic arteries (6 mg/kg). 5. The results suggest a variety of local vasomotor influences of renal and non-renal prostaglandins in conscious rabbits.

Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
Stig Müller ◽  
Ole-Jakob How ◽  
Stig E Hermansen ◽  
Truls Myrmel

Arginin Vasopressin (AVP) is increasingly used to restore mean arterial pressure (MAP) in various circulatory shock states including cardiogenic shock. This is potentially deleterious since AVP is also known to reduce cardiac output by increasing vascular resistance. Aim: We hypothesized that restoring MAP by AVP improves vital organ blood flow in experimental acute cardiac failure. Methods: Cardiac output (CO) and arterial blood flow to the brain, heart, kidney and liver were measured in nine pigs by transit-time flow probes. Heart function and contractility were measured using left ventricular Pressure-Volume catheters. Catheters in central arteries and veins were used for pressure recordings and blood sampling. Left ventricular dysfunction was induced by intermittent coronary occlusions, inducing an 18 % reduction in cardiac output and a drop in MAP from 87 ± 3 to 67 ± 4 mmHg. Results: A low-dose therapeutic infusion of AVP (0.005 u/kg/min) restored MAP but further impaired systemic perfusion (CO and blood flow to the brain, heart and kidney reduced by 29, 18, 23 and 34 %, respectively). The reduced blood flow was due to a 2.0, 2.2, 1.9 and 2.1 fold increase in systemic, brain, heart and kidney specific vascular resistances, respectively. Contractility remained unaffected by AVP. The hypoperfusion induced by AVP was most likely responsible for observed elevated plasma lactate levels and an increased systemic oxygen extraction. Oxygen saturation in blood drawn from the great cardiac vein fell from 31 ± 1 to 22 ± 3 % dropping as low as 10 % in one pig. Finally, these effects were reversed forty minutes after weaning the pigs form the drug. Conclusion: The pronounced reduction in coronary blood flow point to a potentially deleterious effect in postoperative cardiac surgical patients and in patients with coronary heart disease. Also, this is the first study to report a reduced cerebral perfusion by AVP.


1981 ◽  
Vol 61 (1) ◽  
pp. 97-105 ◽  
Author(s):  
R. A. Banks ◽  
L. J. Beilin

1. Systemic and regional vascular changes were measured in conscious rabbits after intravenous sodium meclofenamate, captopril and phentolamine. These drugs were used respectively to inhibit prostaglandin synthesis and angiotensin-converting enzyme, and to block α-adrenoceptors. 2. Meclofenamate reduced renal and adrenal blood flow by 11 and 28% respectively, and doubled hepatic artery flow. The effect on renal and adrenal flow persisted in the presence of phentolamine. 3. Captopril decreased estimated peripheral resistance and increased cardiac output without changing arterial pressure. Kidney and adrenal flow increased by 70 and 21% respectively. 4. Phentolamine reduced arterial pressure and doubled flow to skeletal muscle and increased hepatic artery flow to the liver. 5. Splenic blood flow was unaffected by meclofenamate, captopril or phentolamine alone. Meclofenamate given after captopril caused a halving of splenic flow and a rise in arterial pressure; these effects were prevented by phentolamine. 6. The results point to a continuing effect of prostaglandin synthesis in maintaining blood flow to the kidney and adrenal gland independent of α-adrenoceptor activation in resting conscious rabbits. An important modulating effect of prostaglandins on sympathetic vascular tone in the spleen is suggested.


1976 ◽  
Vol 40 (6) ◽  
pp. 876-882 ◽  
Author(s):  
Y. Kawashima ◽  
K. Okada ◽  
I. Kosugi ◽  
H. In-Nami ◽  
Y. Yamaguchi

The effects of surface-induced deep hypothermia on organ blood flow and on the distribution of cardiac output were investigated in the anesthetized dog. Organ flows were determined by the radioactive microsphere technique. Phenoxybenzamine (POB) was administered prior to hypothermia to minimize vasoconstriction and hence facilitate cooling. Measurements were made before POB, on stabilization after POB, and during hypothermia. Cardiac output was reduced by POB as was blood flow to the pancreas, small intestine, and skeletal muscle. Hypothermia, following POB, produced a further fall in Q and during this maneuver blood flow fell in all organs and vascular beds studied. The relative distribution of Q during hypothermia was essentially the same as in the control except the brain, kidneys, and pancreas received a smaller fraction of the total output. The relatively normal distribution of a reduced cardiac output during hypothermia was in marked contrast to distribution of comparable low cardiac output induced by hemorrhage. In the latter condition, the fraction of the cardiac output perfusing the brain, kidneys, adrenals, and hepatic artery was increased.


1988 ◽  
Vol 254 (4) ◽  
pp. G495-G501 ◽  
Author(s):  
H. Orrego ◽  
F. J. Carmichael ◽  
V. Saldivia ◽  
H. G. Giles ◽  
S. Sandrin ◽  
...  

The mechanism by which ethanol induces an increase in portal vein blood flow was studied in rats using radiolabeled microspheres. Ethanol (2 g/kg) by gavage resulted in an increase of 50-70% in portal vein blood flow. The ethanol-induced increase in portal blood flow was suppressed by the adenosine receptor blocker 8-phenyltheophylline [ethanol, 61.8 +/- 4.1 ml.kg-1.min-1; ethanol + 8-phenyltheophylline (0.2 mg.kg-1.min-1), 44.2 +/- 2.0 ml.kg-1.min-1; P less than 0.05]. By itself, 8-phenyltheophylline (0.2 mg.kg-1.min-1) was without effect on cardiac output or portal blood flow. Adenosine infusion resulted in a dose-dependent increase in portal blood flow with a maximal effect at a dose of 0.17 mg.kg-1.min-1 (control, 41.3 +/- 2.3; adenosine, 81.7 +/- 8.0 ml.kg-1.min-1; P less than 0.05). This adenosine-induced increase in portal blood flow was inhibited by 8-phenyltheophylline in a dose-dependent manner [adenosine, 81.7 +/- 8.0 ml.kg-1.min-1; adenosine + 8-phenyltheophylline (0.2 mg.kg-1.min-1), 49.8 +/- 6.6 ml.kg-1.min; P less than 0.05]. Both alcohol and adenosine significantly reduced preportal vascular resistance by 40% (P less than 0.02) and 60% (P less than 0.01), respectively. These effects were fully suppressed by 8-phenyltheophylline. It is concluded that adenosine is a likely candidate to mediate the ethanol-induced increase in portal vein blood flow. It is suggested that an increase in circulating acetate and liver hypoxia may mediate the effects of alcohol by increasing tissue and interstitial adenosine levels.


1993 ◽  
Vol 264 (4) ◽  
pp. H1166-H1173 ◽  
Author(s):  
P. Wang ◽  
Z. F. Ba ◽  
J. Burkhardt ◽  
I. H. Chaudry

Although mice are widely used for the study of immune consequences of hemorrhage, the changes of cardiac output (CO) and blood flow (BF) in response to trauma and hemorrhage in this species have not been well defined. To study this, nonheparinized C3H/HeN mice (n = 6 per group) underwent laparotomy (i.e., trauma induced), were bled to a mean arterial pressure of 35 mmHg, and maintained for 90 min by withdrawing more blood or returning Ringer lactate. The animals were then resuscitated with four times the volume of maximal bleedout in the form of Ringer lactate over 60 min. Sham-operated mice underwent the same procedure but were neither bled nor resuscitated. At the end of hemorrhage, 60 min postresuscitation, or corresponding time after sham operation, CO and BF were determined by radioactive microspheres. Results indicate that CO and BF decreased significantly at the end of hemorrhage. Resuscitation, however, restored CO and BF in various organs except the brain and skeletal muscle. Despite this, 9 of 16 mice died within 6 days postresuscitation, whereas none of sham mice died (n = 16 per group in this additional study). Therefore, we have developed a nonheparinized model of trauma-hemorrhage and resuscitation in mice that is associated with late mortality. Furthermore, the microsphere technique provides a reliable method for assessing CO and BF in mice. Thus it may be possible to study the correlation between cardiovascular and immunologic alterations under such conditions.


Author(s):  
Hans T. Versmold

Systemic blood pressure (BP) is the product of cardiac output and total peripheral resistance. Cardiac output is controlled by the heart rate, myocardial contractility, preload, and afterload. Vascular resistance (vascular hindrance × viscosity) is under local autoregulation and general neurohumoral control through sympathetic adrenergic innervation and circulating catecholamines. Sympathetic innovation predominates in organs receivingflowin excess of their metabolic demands (skin, splanchnic organs, kidney), while innervation is poor and autoregulation predominates in the brain and heart. The distribution of blood flow depends on the relative resistances of the organ circulations. During stress (hypoxia, low cardiac output), a raise in adrenergic tone and in circulating catecholamines leads to preferential vasoconstriction in highly innervated organs, so that blood flow is directed to the brain and heart. Catecholamines also control the levels of the vasoconstrictors renin, angiotensin II, and vasopressin. These general principles also apply to the neonate.


1999 ◽  
Vol 277 (3) ◽  
pp. H1036-H1044 ◽  
Author(s):  
Shaolong Yang ◽  
Mian Zhou ◽  
Douglas J. Koo ◽  
Irshad H. Chaudry ◽  
Ping Wang

The cardiovascular response to sepsis includes an early, hyperdynamic phase followed by a late, hypodynamic phase. Although administration of pentoxifylline (PTX) produces beneficial effects in sepsis, it remains unknown whether this agent prevents the transition from the hyperdynamic to the hypodynamic response during the progression of sepsis. To study this, male adult rats were subjected to polymicrobial sepsis by cecal ligation and puncture (CLP). At 1 h after CLP, PTX (50 mg/kg body wt) or vehicle was infused intravenously over 30 min. At 20 h after CLP (i.e., the late stage of sepsis), cardiac output and organ blood flow were measured by radioactive microspheres. Systemic and regional (i.e., hepatic, intestinal, and renal) oxygen delivery (Do 2) and oxygen consumption (V˙o 2) were determined. Moreover, plasma levels of lactate and alanine aminotransferase (ALT) were measured, and histological examinations were performed. In additional animals, the necrotic cecum was excised at 20 h after CLP, and mortality was monitored for 10 days thereafter. The results indicate that cardiac output, organ blood flow, and systemic and regional Do 2decreased by 36–65% ( P < 0.05) at 20 h after CLP. Administration of PTX early after the onset of sepsis, however, prevented reduction in measured hemodynamic parameters and increased systemic and regional Do 2 andV˙o 2 by 50–264% ( P < 0.05). The elevated levels of lactate (by 173%, P < 0.05) and ALT (by 718%, P < 0.05), as well as the morphological alterations in the liver, small intestine, and kidneys during sepsis were attenuated by PTX treatment. In addition, PTX treatment decreased the mortality rate from 50 to 0% ( P < 0.05) after CLP and cecal excision. Because PTX prevents the occurrence of hypodynamic sepsis, this agent appears to be a useful adjunct for maintaining hemodynamic stability and preventing lethality from sepsis.


1979 ◽  
Vol 237 (3) ◽  
pp. H381-H385 ◽  
Author(s):  
E. F. Ellis ◽  
E. P. Wei ◽  
H. A. Kontos

To determine the possible role that endogenously produced prostaglandins may play in the regulation of cerebral blood flow, the responses of cerebral precapillary vessels to prostaglandins (PG) D2, E2, G2, and I2 (8.1 X 10(-8) to 2.7 X 10(-5) M) were studied in cats equipped with cranial windows for direct observation of the microvasculature. Local application of PGs induced a dose-dependent dilation of large (greater than or equal to 100 microns) and small (less than 100 microns) arterioles with no effect on arterial blood pressure. The relative vasodilator potency was PGG2 greater than PGE2 greater than PGI2 greater than PGD2. With all PGs, except D2, the percent dilation of small arterioles was greater than the dilation of large arterioles. After application of prostaglandins in a concentration of 2.7 X 10(-5) M, the mean +/- standard error of the percent dilation of large and small arterioles was, respectively, 47.6 +/- 2.7 and 65.3 +/- 6.1 for G2, 34.1 +/- 2.0, and 53.6 +/- 5.5 for E2, 25.4 +/- 1.8, and 40.2 +/- 4.6 for I2, and 20.3 +/- 2.5 and 11.0 +/- 2.2 for D2. Because brain arterioles are strongly responsive to prostaglandins and the brain can synthesize prostaglandins from its large endogenous pool of prostaglandin precursor, prostaglandins may be important mediators of changes in cerebral blood flow under normal and abnormal conditions.


1985 ◽  
Vol 58 (4) ◽  
pp. 1148-1156 ◽  
Author(s):  
S. Magder ◽  
D. Lockhat ◽  
B. J. Luo ◽  
C. Roussos

Since respiratory muscles fail when blood flow is inadequate, we asked whether their blood flow would be maintained in severe hypotensive states at the expense of other vital organs (brain, heart, kidney, gut, spleen). We measured blood flow (radiolabeled microspheres) to respiratory muscles and vital organs in 11 dogs breathing against an inspiratory elastic load, first with normal blood pressure (BP) and then hypotension produced by cardiac tamponade. With the elastic load alone, there was no change in BP or cardiac output; diaphragmatic blood flow (Qdi) increased from 12.8 +/- 7.0 to 34.1 +/- 15.6 ml/100 g, and total respiratory muscle flow (QTR) increased from 56.5 +/- 19.1 to 97.4 +/- 36.5 ml/100 g, but except for the brain, there was no change in blood flow to other organs. With tamponade (mean BP = 79 +/- 16 mmHg), flow decreased to all organs, whereas Qdi (39.0 +/- 19.4) did not change. QTR decreased, but not significantly, to 88.6 +/- 49.5. With more tamponade (mean BP = 53 +/- 13 mmHg), flow to all vital organs decreased as well as QTR (57.9 +/- 47.18), but Qdi did not significantly decrease and had the same relationship to respiratory force as with normal BP. Thus, with severe inspiratory elastic loading and severe hypotension, the diaphragm and external intercostal muscles did most of the respiratory work, and their flow was maintained at the expense of other vital organs.


Sign in / Sign up

Export Citation Format

Share Document