Effects of the angiotensin II receptor antagonist Losartan (DuP 753/MK 954) on arterial blood pressure, heart rate, plasma concentrations of angiotensin II and renin and the pressor response to infused angiotensin II in the salt-deplete dog

1992 ◽  
Vol 83 (5) ◽  
pp. 549-556 ◽  
Author(s):  
R. J. MacFadyen ◽  
M. Tree ◽  
A. F. Lever ◽  
J. L. Reid

1. The blood pressure, heart rate, hormonal and pressor responses to constant rate infusion of various doses of the angiotensin (type 1) receptor antagonist Losartan (DuP 753/MK 954) were studied in the conscious salt-deplete dog. 2. Doses in the range 0.1–3 μmin−1 kg−1 caused no change in blood pressure, heart rate or pressor response to angiotensin II (54 ng min−1kg−1), and a dose of 10 μgmin−1 kg−1 had no effect on blood pressure, but caused a small fall in the pressor response to angiotensin II. Infusion of Losartan at 30 μmin−1 kg−1 for 3 h caused a fall in mean blood arterial pressure from baseline (110.9 ± 11.2 to 95.0 ± 12.8 mmHg) and a rise in heart rate (from 84.6 ± 15.1 to 103 ± 15.2 beats/min). Baseline plasma angiotensin II (42.5 ± 11.8 pg/ml) and renin (64.5 ± 92.7 μ-units/ml) concentrations were already elevated in response to salt depletion and rose significantly after Losartan infusion to reach a plateau by 70 min. The rise in mean arterial blood pressure after a test infusion of angiotensin II (35.3 ± 11.6 mmHg) was reduced at 15 min (11.8 ± 6.8 mmHg) by Losartan and fell progressively with continued infusion (3 h, 4.3 ± 3.3 mmHg). The peak plasma angiotensin II concentration during infusion of angiotensin II was unaffected by Losartan, but the rise in plasma angiotensin II concentration during infusion was reduced because of the elevated background concentration. Noradrenaline infusion caused a dose-related rise in mean blood arterial pressure (1000 ngmin−1kg−1, +19.9 ± 8 mmHg; 2000ngmin−1 kg−1, +52.8 ± 13.9 mmHg) with a fall in heart rate (1000 ng min−1 kg−1, −27.9 ± 11.5 beats/min; 2000 ng min−1 kg−1, −31.2 ± 17.3 beats/min). During Losartan infusion the 1000 but not the 2000 ng min−1 kg−1 noradrenaline infusion caused a greater rise in mean arterial blood pressure and a greater fall in heart rate. The fall in heart rate tended to decrease with continued infusion of Losartan. Plasma catecholamine concentrations were unaffected by Losartan. In a further study, higher doses of Losartan (100, 300 and 1000 μg min−1 kg−1; 30 min) produced greater falls in mean arterial blood pressure also with a rise in heart rate and complete blockade of the pressor effect of infused angiotensin II. Some animals became disturbed at the highest dose. 3. Losartan produces rapid dose-related falls in blood pressure and a rise in heart rate and renin release with elevation of plasma angiotensin II. Pressor responses to angiotensin II are reduced at intermediate doses and are eliminated at high doses. Losartan does not appear to inhibit angiotensin II clearance from the plasma and may in some way increase it.

1979 ◽  
Vol 56 (4) ◽  
pp. 325-333 ◽  
Author(s):  
W. B. Campbell ◽  
J. M. Schmitz ◽  
H. D. Itskovitz

1. To investigate the relative roles of angiotensin II (AII) and des-Asp1-angiotensin II (angiotensin III) in the control of blood pressure and aldosterone release, the effects of seven angiotensin agonists on mean arterial blood pressure and serum aldosterone concentrations were compared in normal and sodium-depleted, conscious rats. 2. In normal rats, angiotensin I, α-Asp1-angiotensin II, β-Asp1-angiotensin II, and angiotensin II-amide were equipotent in elevating mean arterial blood pressure. Angiotensin III, des-Asp1-angiotensin I, and poly-O-acetylserine-angiotensin II were 25%, 25%, and 41% as potent as angiotensin II, respectively. After sodium depletion, pressor responses to these angiotensin peptides were reduced approximately 60–80% when compared with control responses. In contrast, pressor responses to noradrenaline were not significantly affected by sodium depletion. 3. Angiotensin II, β-Asp1-angiotensin II, angiotensin II-amide, and angiotensin III were equipotent in increasing serum aldosterone concentrations in normal animals. Angiotensin I was 59% and des-Asp1-angiotensin I only 5% as potent as angiotensin II in their abilities to release aldosterone. After sodium depletion, control serum aldosterone concentrations increased as did the slope of the dose—response curve for each angiotensin peptide. Angiotensin II was the most potent steroidogenic peptide in sodium-depleted rats with angiotensin III and β-Asp1-angiotensin II being 27%, angiotensin I 7%, angiotensin II-amide 3%, and des-Asp1-angiotensin I 1% as potent as angiotensin II in releasing aldosterone. Poly-O-acetylserine-angiotensin II has less steroidogenic effect than angiotensin II or III in both normal and sodium-depleted animals. 4. Infusions of the angiotensin II antagonist, Sar1-Ile8-angiotensin II, and the angiotensin III antagonist, Ile7-angiotensin III, enhanced aldosterone release in normal rats without altering blood pressure. After sodium depletion, Sar1-Ile8-angiotensin II decreased blood pressure without affecting aldosterone release whereas Ile7-angiotensin III diminished aldosterone release without altering blood pressure. 5. These data suggest that angiotensin II, independent of its conversion into angiotensin III, is an important regulator of steroidogenesis in the rat in normal sodium states. In sodium depletion, the octapeptide retains significant steroidogenic activity; however, the contribution of angiotensin III to its steroidogenic effects is increased.


1992 ◽  
Vol 82 (2) ◽  
pp. 157-162 ◽  
Author(s):  
Margaret Ramsay ◽  
Fiona Broughton Pipkin ◽  
Peter Rubin

1. Twenty-eight healthy non-pregnant women and 28 women in the first or second trimester of pregnancy were studied. They were given an incremental intravenous infusion of either noradrenaline or angiotensin II. Pressor and heart rate responses were documented. 2. Dose-pressor response curves were constructed for the two agents in pregnant and non-pregnant women (n=14 in each group). The regression parameters of slope and intercept were calculated, and were used to derive the variables of dose required to elicit a 10 mmHg rise in systolic or diastolic blood pressure. 3. The pressor response to angiotensin II was diminished in pregnancy, with approximately twice the dose being required to raise the systolic or diastolic arterial blood pressure as in non-pregnant subjects. 4. The systolic pressor response to noradrenaline was slightly diminished in pregnancy, but the diastolic pressor response was unchanged. There were no significant differences between the doses of noradrenaline required to elicit a 10 mmHg rise in systolic or diastolic arterial blood pressure in pregnant or non-pregnant subjects. 5. There was a diminution in the bradycardia evoked in response to both hormones in pregnancy. 6. We conclude that the well-documented pressor insensitivity to angiotensin II during pregnancy is a specific phenomenon, not a manifestation of a generalized reduction in vascular reactivity.


1986 ◽  
Vol 251 (3) ◽  
pp. H612-H618 ◽  
Author(s):  
D. N. Darlington ◽  
J. Shinsako ◽  
M. F. Dallman

Hemorrhages of various magnitudes were performed on conscious rats, and arterial pressure, heart rate, and plasma levels of adrenocorticotropin hormone (ACTH), epinephrine, and norepinephrine were measured. Eight rats were prepared with chronic femoral arterial cannulas and received a 10, 15, or 20 ml/kg X 3 min hemorrhage in random order on day 4, 7, or 10 after surgery. Mean arterial blood pressure, heart rate, and plasma ACTH, epinephrine, and norepinephrine concentrations were determined before and 20 min after hemorrhage. Arterial blood pressure decreased significantly immediately after each hemorrhage and slowly recovered over the next 20 min. Heart rate did not change during the 10 ml/kg X 3 min hemorrhage but decreased significantly after 15 and 20 ml/kg X 3 min hemorrhages. Plasma ACTH and epinephrine levels increased significantly 20 min after the 15 and 20 ml/kg X 3 min hemorrhages but not after 10 ml/kg X 3 min hemorrhage. Norepinephrine increased significantly 20 min after the 20 ml/kg X 3 min hemorrhage but not after the 10 or 15 ml/kg X 3 min hemorrhage. There was no significant effect of time and repeated hemorrhages on resting levels of plasma ACTH, epinephrine, norepinephrine, osmolality, or proteins. Since hemorrhage leads to a fall in arterial pressure and a subsequent rise in plasma ACTH, the relationship between plasma ACTH and mean arterial blood pressure during hemorrhage was examined in both conscious and acutely prepared pentobarbital sodium-anesthetized rats.(ABSTRACT TRUNCATED AT 250 WORDS)


1980 ◽  
Vol 239 (1) ◽  
pp. H81-H87 ◽  
Author(s):  
P. T. Pullan ◽  
C. I. Johnston ◽  
W. P. Anderson ◽  
P. I. Korner

The role of vasopressin in blood pressure control and in the pathogenesis of one-kidney Goldblatt hypertension was investigated in the conscious dog. Intravenous infusion of synthetic arginine vasopressin to elevate plasma levels approximately fivefold to 31 pg/ml caused bradycardia in normal dogs, together with suppression of plasma renin activity and angiotensin II. This plasma level of vasopressin also caused elevation of mean arterial blood pressure in dogs with pharmacological total autonomic blockade. A similar degree of elevation of plasma vasopressin concentration was observed following mild nonhypotensive hemorrhage; more severe hemorrhage resulted in an approximate 100-fold increase in plasma vasopressin levels. Severe renal artery constriction in unilaterally nephrectomized dogs caused a marked rise in mean arterial blood pressure, but only a doubling of plasma vasopressin concentration. A suppressor infusion of vasopressin did not potentiate the pressor response to infused angiotensin II. It is concluded that vasopressin may play a role in normal cardiovascular homeostatic responses, but it is unlikely to have a significant direct vasoconstrictor role in the pathogenesis of this form of experimental renal hypertension.


1992 ◽  
Vol 263 (5) ◽  
pp. R1030-R1034 ◽  
Author(s):  
J. D. Stone ◽  
J. T. Crofton ◽  
L. Share

In conscious, unrestrained rats, the intracerebroventricular injection of the cholinergic agonist, carbachol, or angiotensin II resulted in the transient stimulation of vasopressin secretion, elevation of mean arterial blood pressure, and reduction of heart rate. After the injection of carbachol (25 ng) into a lateral cerebral ventricle, the plasma vasopressin concentration in male rats was increased to twice that of female rats in each phase of the estrous cycle; mean arterial blood pressure was elevated more in males than females, whereas heart rate fell to the same extent in both sexes. In contrast, the increase in the plasma vasopressin concentration of males after the injection of angiotensin II (20 ng) was one-half that of females, and the hypertensive and bradycardic responses were similar in both sexes. Phase of the female estrous cycle had no effect on the responses to either agent. These findings indicate that central cholinergic and angiotensinergic mechanisms controlling vasopressin release are influenced differently by gender. The role of the gonadal steroid hormones in these mechanisms remains to be determined.


1991 ◽  
Vol 81 (6) ◽  
pp. 727-732 ◽  
Author(s):  
Marohito Murakami ◽  
Hiromichi Suzuki ◽  
Atsuhiro Ichihara ◽  
Mareo Naitoh ◽  
Hidetomo Nakamoto ◽  
...  

1. The effects of l-arginine on systemic and renal haemodynamics were investigated in conscious dogs. l-Arginine was administered intravenously at doses of 15 and 75 μmol min−1 kg−1 for 20 min. 2. Mean arterial blood pressure, heart rate and cardiac output were not changed significantly by l-arginine infusion. However, l-arginine infusion induced a significant elevation of renal blood flow from 50 ± 3 to 94 ± 12 ml/min (means ± sem, P < 0.01). 3. Simultaneous infusion of NG-monomethyl-l-arginine (0.5 μmol min−1 kg−1) significantly inhibited the increase in renal blood flow produced by l-arginine (15 μmol min−1 kg−1) without significant changes in mean arterial blood pressure or heart rate. 4. Pretreatment with atropine completely inhibited the l-arginine-induced increase in renal blood flow, whereas pretreatment with indomethacin attenuated it (63 ± 4 versus 82 ± 10 ml/min, P < 0.05). 5. A continuous infusion of l-arginine increased renal blood flow in the intact kidney (55 ± 3 versus 85 ± 9 ml/min, P < 0.05), but not in the contralateral denervated kidney (58 ± 3 versus 56 ± 4 ml/min, P > 0.05). 6. These results suggest that intravenously administered l-arginine produces an elevation of renal blood flow, which may be mediated by facilitation of endogenous acetylcholine-induced release of endothelium-derived relaxing factor and vasodilatory prostaglandins.


1991 ◽  
Vol 261 (2) ◽  
pp. R420-R426
Author(s):  
M. Inoue ◽  
J. T. Crofton ◽  
L. Share

We have examined in conscious rats the interaction between centrally acting prostanoids and acetylcholine in the stimulation of vasopressin secretion. The intracerebroventricular (icv) administration of carbachol (25 ng) resulted in marked transient increases in the plasma vasopressin concentration and mean arterial blood pressure and a transient reduction in heart rate. Central cyclooxygenase blockade by pretreatment icv with either meclofenamate (100 micrograms) or indomethacin (100 micrograms) virtually completely blocked these responses. Prostaglandin (PG) D2 (20 micrograms icv) caused transient increases in the plasma vasopressin concentration (much smaller than after carbachol) and heart rate, whereas mean arterial blood pressure rose gradually during the 15-min course of the experiment. Pretreatment with the muscarinic antagonist atropine (10 micrograms icv) decreased the peak vasopressin response to icv PGD2 by approximately one-third but had no effect on the cardiovascular responses. We conclude that the stimulation of vasopressin release by centrally acting acetylcholine is dependent on increased prostanoid biosynthesis. On the other hand, stimulation of vasopressin release by icv PGD2 is partially dependent on activation of a cholinergic pathway.


1992 ◽  
Vol 262 (1) ◽  
pp. H149-H156 ◽  
Author(s):  
U. Palm ◽  
W. Boemke ◽  
H. W. Reinhardt

The existence of urinary excretion rhythms in dogs, which is a matter of controversy, was investigated under strictly controlled intake and environmental conditions. In seven conscious dogs, 14.5 mmol Na, 3.55 mmol K, and 91 ml H2O.kg body wt-1.24 h-1 were either administered with food at 8:30 A.M. or were continuously infused at 2 consecutive days. During these 3 days, automatized 20-min urine collections, mean arterial blood pressure (MABP), and heart rate (HR) recordings were performed without disturbing the dogs. Fundamental and partial periodicities, the noise component of urinary sodium excretion (UNaV), MABP, and HR were analyzed using a method derived from Fourier and Cosinor analysis. Oral intake (OI) leads to powerful 24-h periodicities in all dogs and seems to synchronize UNaV. UNaV on OI peaked between 1 and 3 P.M. Under the infusion regimen, signs of nonstationary rhythms and desynchronization predominated. UNaV under the infusion regimen could be separated into two components: a rather constant component continuously excreted and superimposed to this an oscillating component. No direct coupling between UNaV and MABP periodicities could be demonstrated. On OI, an increase in HR seems to advance the peak UNaV in the postprandial period. HR and MABP signals were both superimposed with noise. We conclude that UNaV rhythms are present in dogs. They are considerably more pronounced on OI.


1992 ◽  
Vol 263 (3) ◽  
pp. R602-R608
Author(s):  
W. W. Burggren ◽  
J. E. Bicudo ◽  
M. L. Glass ◽  
A. S. Abe

Systemic arterial blood pressure and heart rate (fH) were measured in unanesthetized, unrestrained larvae and adults of the paradoxical frog, Pseudis paradoxus from Sao Paulo State in Brazil. Four developmental groups were used, representing the complete transition from aquatic larvae to primarily air-breathing adults. fH (49-66 beats/min) was not significantly affected by development, whereas mean arterial blood pressure was strongly affected, being lowest in the stage 37-39 larvae (10 mmHg), intermediate in the stage 44-45 larvae (18 mmHg), and highest in the juveniles and adults (31 and 30 mmHg, respectively). Blood pressure was not significantly correlated with body mass, which was greatest in the youngest larvae and smallest in the juveniles. In the youngest larvae studied (stages 37-39), lung ventilation was infrequent, causing a slight decrease in arterial blood pressure but no change in heart rate. Lung ventilation was more frequent in stages 44-45 larvae and nearly continuous in juveniles and adults floating at the surface. Bradycardia during both forced and voluntary diving was observed in almost every advanced larva, juvenile, and adult but in only one of four young larvae. Developmentally related changes in blood pressure were not complete until metamorphosis, whereas diving bradycardia was present at an earlier stage.


Sign in / Sign up

Export Citation Format

Share Document