Insulin Resistance of Stress: Sites and Mechanisms

1993 ◽  
Vol 85 (5) ◽  
pp. 525-535 ◽  
Author(s):  
Luigi S. Brandi ◽  
Donatella Santoro ◽  
Andrea Natali ◽  
Fiorella Altomonte ◽  
Simona Baldi ◽  
...  

1. Stress is associated with a severe, yet reversible, form of insulin resistance. The aim of this study was to quantify the kinetics of insulin action (sensitivity and responsiveness) on intermediary metabolism during post-surgical stress. 2. We studied nine patients 6–8 h after major uncomplicated surgery, and eight healthy subjects matched for age, weight, glucose tolerance and duration of fast. A three-step isoglycaemic insulin clamp was combined with indirect calorimetry, [6-3H]glucose infusion and the forearm technique. 3. The following significant (P <0.05 or less) abnormalities were found in the patients. Hepatic glucose production was higher at baseline, and less suppressed by insulin. Whole-body glucose disposal was impaired at all insulin doses (by 33–60%). Glucose oxidation was depressed throughout the dose range but its increments in response to insulin were normal. In contrast, non-oxidative glucose disposal was essentially unresponsive. At all insulin levels, forearm glucose extraction was markedly depressed and forearm lactate release was in excess of concurrent glucose uptake, suggesting ongoing glycogenolysis despite insulin. Total lipolysis (plasma free fatty acid and glycerol levels) promptly responded to insulin but remained higher than in the control subjects throughout. In the forearm, even the highest insulin dose could not suppress net free fatty acid and glycerol release. Total lipid oxidation was increased throughout the insulin range, and calculated direct free fatty acid (as opposed to plasma free fatty acid) oxidation was virtually unaffected by insulin. Protein oxidation was slightly (35%) increased, but was suppressed normally in response to insulin. Energy expenditure was 20% higher at baseline, and tailed to rise with insulin. Arterial blood pH values were consistently (if slightly) lower, and net forearm proton release was higher, both at baseline and daring insulin infusion. 4. Post-surgical unsulin resistance is characterized by normal sensitivity but decreased responsiveness of glucose oxidation, lipolysis and plasma free fatty acid oxidation, whereas glycogen synthesis and direct free fatty acid oxidation are virtually unresponsive. For both glucose and lipid metabolism, the insulin resistance is particularly severe in forearm tissues, in which mild metabolic acidosis may play an additional role.

1994 ◽  
Vol 87 (s1) ◽  
pp. 94-95
Author(s):  
LS Sidossis ◽  
AR Coggan ◽  
A Gastaldelli ◽  
RR Wolfe

2008 ◽  
Vol 295 (3) ◽  
pp. H939-H945 ◽  
Author(s):  
Lufang Zhou ◽  
Hazel Huang ◽  
Tracy A. McElfresh ◽  
Domenick A. Prosdocimo ◽  
William C. Stanley

The role of anaerobic glycolysis and oxidative substrate selection on contractile function and mechanical efficiency during moderate severity myocardial ischemia is unclear. We hypothesize that 1) preventing anaerobic glycolysis worsens contractile function and mechanical efficiency and 2) increasing glycolysis and glucose oxidation while inhibiting free fatty acid oxidation improves contractile function during ischemia. Experiments were performed in anesthetized pigs, with regional ischemia induced by a 60% decrease in left anterior descending coronary artery blood flow for 40 min. Three groups were studied: 1) no treatment, 2) inhibition of glycolysis with iodoacetate (IAA), or 3) hyperinsulinemia and hyperglycemia (HI + HG). Glucose and free fatty acid oxidation were measured using radioisotopes and anaerobic glycolysis from net lactate efflux and myocardial lactate content. Regional contractile power was assessed from left ventricular pressure and segment length in the anterior wall. We found that preventing anaerobic glycolysis with IAA during ischemia in the absence of alterations in free fatty acid and glucose oxidation did not adversely affect contractile function or mechanical efficiency during myocardial ischemia, suggesting that anaerobic glycolysis is not essential for maintaining residual contractile function. Increasing glycolysis and glucose oxidation with HI + HG inhibited free fatty acid oxidation and improved contractile function and mechanical efficiency. In conclusion, these results show a dissociation between myocardial function and anaerobic glycolysis during moderate severity ischemia in vivo, suggesting that metabolic therapies should not be aimed at inhibiting anaerobic glycolysis per se, but rather activating insulin signaling and/or enhancing carbohydrate oxidation and/or decreasing fatty acid oxidation.


1990 ◽  
Vol 123 (1) ◽  
pp. 30-36 ◽  
Author(s):  
Leif C. Groop ◽  
Riccardo Bonadonna ◽  
Stefano DelPrato ◽  
Klaus Ratheiser ◽  
Ralph A. DeFronzo

Abstract. The effect on energy metabolism of a 6-h prolongation of the conventional 12-h overnight fast was examined in 9 healthy subjects and in 7 patients with non-insulin-dependent diabetes mellitus. Plasma glucose concentration decreased by 7 and 23%, in control and diabetic subjects, respectively. In control subjects, the fall in plasma glucose was associated with a slight but significant fall in plasma insulin and a rise in plasma free fatty acid concentrations. During this same period, the rates of plasma free fatty acid oxidation, measured by infusion of [14C]palmitate, and net lipid oxidation, measured by indirect calorimetry, increased in normal subjects by 55 and 76%, respectively; the rate of glucose oxidation measured by indirect calorimetry decreased by 37%. In the diabetic patients, the free fatty acid oxidation rate was enhanced already after 12 h of fasting compared with controls (2.06 vs 1.30 μmol · kg−1 · min−1; p<0.05) and did not change significantly during the 6-h observation period. After 18 h of fasting, the rate of plasma free fatty acid oxidation was similar in control and diabetic subjects. The data thus emphasize the need for strict standardization of the overnight fasting period for metabolic studies, and demonstrate the difficulties in comparing basal rates of substrate oxidation between healthy and diabetic subjects.


2003 ◽  
Vol 28 (6) ◽  
pp. 818-830 ◽  
Author(s):  
Tanja Oosthuyse ◽  
Andrew N. Bosch ◽  
Susan Jackson

The acetate correction factor is used to account for retention of carbon label in exchange reactions of the tricarboxylic acid cycle in studies estimating free fatty acid oxidation with carbon-labeled tracers. Previous evidence indicates that substrate utilisation and metabolic rate vary across the menstrual cycle, which may alter the correction factor. We therefore derived the acetate correction factor for each of three menstrual phases (early follicular [EF], late follicular [LF], and midluteal [ML] phase) from the fractional recovery of 13CO2 from a constant infusion of sodium-[1-13C]acetate during 90 min of submaximal exercise (60%[Formula: see text]) in sedentary eumenorrhoeic women. There was no difference in the correction factor between the EF and LF or the LF and ML phases, but the correction factor derived in the ML phase was significantly lower than in the EF phase (p < 0.05). Neither energy expenditure nor whole body substrate utilisation during exercise varied significantly between menstrual phases and therefore cannot explain the observed difference in the correction factor. The lower correction factor in the ML phase, compared to the EF phase, would result in only a small increase of ∼6% in the calculated plasma free fatty acid oxidation rate. Key words: carbon isotopes, women, ovarian hormones, exercise, substrate oxidation


1990 ◽  
Vol 259 (5) ◽  
pp. E736-E750 ◽  
Author(s):  
R. C. Bonadonna ◽  
L. C. Groop ◽  
K. Zych ◽  
M. Shank ◽  
R. A. DeFronzo

Methodology for measuring plasma free fatty acid (FFA) turnover/oxidation with [1–14C]palmitate was tested in normal subjects. In study 1, two different approaches (720-min tracer infusion without prime vs. 150-min infusion with NaH14CO3 prime) to achieve steady-state conditions of 14CO2 yielded equivalent rates of plasma FFA turnover/oxidation. In study 2, during staircase NaH14CO3 infusion, calculated rates of 14CO2 appearance agreed closely with NaH14CO3 infusion rates. In study 3, 300-min euglycemic insulin clamp documented that full biological effect of insulin on plasma FFA turnover/oxidation was established within 60–120 min. In study 4, plasma insulin concentration was raised to 14 +/- 2, 23 +/- 2, 38 +/- 2, 72 +/- 5, and 215 +/- 10 microU/ml. A dose-dependent insulin suppression of plasma FFA turnover/oxidation was observed. Plasma FFA concentration correlated positively with plasma FFA turnover/oxidation in basal and insulinized states. Total lipid oxidation (indirect calorimetry) was significantly higher than plasma FFA oxidation in the basal state, suggesting that intracellular lipid stores contributed to whole body lipid oxidation. Hepatic glucose production and total glucose disposal showed the expected dose-dependent suppression and stimulation, respectively, by insulin. In conclusion, insulin regulation of plasma FFA turnover/oxidation is maximally manifest at low physiological plasma insulin concentrations, and in the basal state a significant contribution to whole body lipid oxidation originates from lipid pool(s) that are different from plasma FFA.


2001 ◽  
Vol 86 (4) ◽  
pp. 1638-1644
Author(s):  
E. E. Blaak ◽  
B. H. R. Wolffenbuttel ◽  
W. H. M. Saris ◽  
M. M. A. L. Pelsers ◽  
A. J. M. Wagenmakers

Sign in / Sign up

Export Citation Format

Share Document