Cytotoxic T lymphocytes and viral evolution in primary HIV-1 infection*

1999 ◽  
Vol 97 (6) ◽  
pp. 707-718 ◽  
Author(s):  
David A. PRICE ◽  
Chris A. O'CALLAGHAN ◽  
Joseph A. WHELAN ◽  
Philippa J. EASTERBROOK ◽  
Rodney E. PHILLIPS

Efforts to develop immune-based therapies for HIV infection have been impeded by incomplete definition of the immunological correlates of protection. Despite many precedents demonstrating that CD8+ cytotoxic T lymphocytes are key mediators of protective anti-viral immunity in non-human animal models, direct evidence that these effector cells control viral replication in HIV-1 infection has remained elusive. The first part of this paper describes a detailed immunological and genetic study founded on evolutionary considerations. Following infection with HIV-1, virus variants which escaped recognition by autologous cytotoxic T lymphocytes were shown to possess a selection advantage within the host environment. Cytotoxic T lymphocytes therefore exert anti-viral pressure in vivo. This observation provides compelling evidence that cytotoxic T lymphocytes comprise a significant element of anti-retroviral immunity. Subsequently, the quantification of peripheral cytotoxic T lymphocyte frequencies utilizing peptide–(human leucocyte antigen class I) tetrameric complexes is described. Five patients with qualitatively similar immunodominant cytotoxic T lymphocyte responses during symptomatic primary HIV-1 infection were studied longitudinally. Expansions of virus-specific CD8+ lymphocytes comprising up to 2% of the total CD8+ T cell population were observed in the acute phase of infection. Antigenic load was identified as an important determinant of circulating HIV-1-specific CD8+ lymphocyte levels; however, significant numbers of such cells were also found to persist following prolonged therapeutic suppression of plasma viraemia. In addition, an analysis of antigenic sequence variation with time in this case series suggests that the early administration of combination anti-retroviral therapy may limit HIV-1 mutational escape from host cytolytic specificities. The implications of these preliminary data are discussed. The data presented suggest that vaccination protocols should aim to elicit vigorous cytotoxic T lymphocyte responses to HIV-1. Attempts to stimulate polyvalent responses to mutationally intolerant epitopes are likely to be most effective. Optimal management of HIV-1 infection requires an understanding of dynamic host–virus interactions, and may involve strategies designed to enhance cytotoxic T lymphocyte activity following periods of anti-retroviral drug therapy.

1975 ◽  
Vol 142 (3) ◽  
pp. 790-795 ◽  
Author(s):  
A Altman ◽  
I R Cohen

In the present study we used hydrocortisone (HC) treatment in vivo as a probe to analyze two different in vitro systems for the regeneration of cytotoxic T lymphocyte (CTL), namely the antifibroblast reaction (AFR) and the mixed lymphocyte culture (MLC) system. We found that cells remaining in the thymus after HC treatment had increased reactivity in these two systems. However, the same treatment in the spleen severely depressed the MLC reactivity in both the proliferative and the cytolytic phases, while markedly increasing the AFR reactivity. These findings demonstrate heterogeneity of CTL precursors and/or their pathways of differentiation into effector cells. In addition, MLC-reactive cells in the thymus appear to be distinct from such cells in the spleen, as judged from their differential sensitivity to HC.


2004 ◽  
Vol 85 (11) ◽  
pp. 3229-3238 ◽  
Author(s):  
Carolina Johnstone ◽  
Patricia de León ◽  
Francisco Medina ◽  
José A. Melero ◽  
Blanca García-Barreno ◽  
...  

Human respiratory syncytial virus (RSV) is a major cause of respiratory infection in children and in the elderly. The RSV fusion (F) glycoprotein has long been recognized as a vaccine candidate as it elicits cytotoxic T-lymphocyte (CTL) and antibody responses. Two murine H-2Kd-restricted CTL epitopes (F85–93 and F92–106) are known in the F protein of the A2 strain of RSV. F-specific CTL lines using BCH4 fibroblasts that are persistently infected with the Long strain of human RSV as stimulators were generated, and it was found that in this strain only the F85–93 epitope is conserved. Motif based epitope prediction programs and an F2 chain deleted F protein encoded in a recombinant vaccinia virus enabled identification of a new epitope in the Long strain, F249–258, which is presented by Kd as a 9-mer (TYMLTNSEL) or a 10-mer (TYMLTNSELL) peptide. The results suggest that the 10-mer might be a naturally processed endogenous Kd ligand. The CD8+ T-lymphocyte responses to epitopes F85–93 and F249–258 present in the F protein of RSV Long were found to be strongly skewed to F85–93 in in vitro multispecific CTL lines and in vivo during a secondary response to a recombinant vaccinia virus that expresses the entire F protein. However, no hierarchy in CD8+ T-lymphocyte responses to F85–93 and F249–258 epitopes was observed in vivo during a primary response.


PLoS Biology ◽  
2006 ◽  
Vol 4 (4) ◽  
pp. e90 ◽  
Author(s):  
Becca Asquith ◽  
Charles T. T Edwards ◽  
Marc Lipsitch ◽  
Angela R McLean

2017 ◽  
Vol 91 (16) ◽  
Author(s):  
Arumugam Balamurugan ◽  
Deon Claiborne ◽  
Hwee L. Ng ◽  
Otto O. Yang

ABSTRACT Mutational escape of HIV-1 from HIV-1-specific CD8+ T lymphocytes (CTLs) is a major barrier for effective immune control. Each epitope typically is targeted by multiple clones with distinct T cell receptors (TCRs). While the clonal repertoire may be important for containing epitope variation, determinants of its composition are poorly understood. We investigate the clonal repertoire of 29 CTL responses against 23 HIV-1 epitopes longitudinally in nine chronically infected untreated subjects with plasma viremia of <3,000 RNA copies/ml over 17 to 179 weeks. The composition of TCRs targeting each epitope varied considerably in stability over time, although clonal stability (Sorensen index) was not significantly time dependent within this interval. However, TCR stability inversely correlated with epitope variability in the Los Alamos HIV-1 Sequence Database, consistent with TCR evolution being driven by epitope variation. Finally, a robust inverse correlation of TCR breadth against each epitope versus epitope variability further suggested that this variability drives TCR repertoire diversification. In the context of studies demonstrating rapidly shifting HIV-1 sequences in vivo, our findings support a variably dynamic process of shifting CTL clonality lagging in tandem with viral evolution and suggest that preventing escape of HIV-1 may require coordinated direction of the CTL clonal repertoire to simultaneously block escape pathways. IMPORTANCE Mutational escape of HIV-1 from HIV-1-specific CD8+ T lymphocytes (CTLs) is a major barrier to effective immune control. The number of distinct CTL clones targeting each epitope is proposed to be an important factor, but the determinants are poorly understood. Here, we demonstrate that the clonal stability and number of clones for the CTL response against an epitope are inversely associated with the general variability of the epitope. These results show that CTLs constantly lag epitope mutation, suggesting that preventing HIV-1 escape may require coordinated direction of the CTL clonal repertoire to simultaneously block escape pathways.


Sign in / Sign up

Export Citation Format

Share Document