scholarly journals Schizosaccharomyces pombe gad7 + encodes a phosphoprotein with a bZIP domain, which is required for proper G1 arrest and gene expression under nitrogen starvation

1996 ◽  
Vol 1 (4) ◽  
pp. 391-408 ◽  
Author(s):  
Junko Kanoh ◽  
Yoshinori Watanabe ◽  
Miho Ohsugi ◽  
Yuichi Iino ◽  
Masayuki Yamamoto
1996 ◽  
Vol 16 (4) ◽  
pp. 1527-1533 ◽  
Author(s):  
O Mondesert ◽  
C H McGowan ◽  
P Russell

Cdc2, a catalytic subunit of cyclin-dependent kinases, is required for both the G1-to-S and G2-to-M transitions in the fission yeast Schizosaccharomyces pombe. Cdc13, a B-type cyclin, is required for the M-phase induction function of Cd2. Two additional B-type cyclins, Cig1 and Cig2, have been identified in S. pombe, but none of the B-type cyclins are individually required for the onset of S. We report that Cdc13 is important for DNA replication in a strain lacking Cig2. Unlike deltacdc13 cells, double-mutant deltacdc13 deltacig2 cells are defective in undergoing multiple rounds of DNA replication. The conclusion that Cig2 promotes S is further supported by the finding that Cig2 protein and Cig2-associated kinase activity appear soon after the completion of M and peak during S, as well as the observation that S is delayed in deltacig2 cells as they recover from a G1 arrest induced by nitrogen starvation. These studies indicate that Cig2 is the primary S-phase-promoting cyclin in S. pombe but that Cdc13 can effectively substitute for Cig2 in deltacig2 cells. These observations also suggest that the gradual increase in the activity of Cdc2-Cdc13 kinase can be sufficient for the correct temporal ordering of S and M phases in deltacig2 cells.


1993 ◽  
Vol 13 (1) ◽  
pp. 80-88 ◽  
Author(s):  
K Tanaka ◽  
J Davey ◽  
Y Imai ◽  
M Yamamoto

A defect in the map3 gene of the fission yeast Schizosaccharomyces pombe causes h+ mating-type-specific sterility. This gene was cloned by complementation. Nucleotide sequence analysis showed that it has a coding capacity of 365 amino acids. The deduced map3 gene product is a putative seven-transmembrane protein and has 20.0% amino acid identity with the a-factor receptor of Saccharomyces cerevisiae, encoded by STE3. It is also homologous with the Ustilago maydis mating pheromone receptors. The map3 gene is expressed in h+ cells but not in h- cells, and the transcripts are induced in response to nitrogen starvation. h+ cells defective in map3 do not respond to purified M-factor. When map3 is expressed ectopically in h- cells, they apparently acquire the ability to respond to the M-factor produced by themselves. The gpa1 gene, which encodes the alpha-subunit of a G-protein presumed to couple with the mating pheromone receptors, is essential for this function of map3. These observations strongly suggest that map3 encodes the M-factor receptor. Furthermore, this study provides strong support for the notion that pheromone signaling is essential for initiation of meiosis in S. pombe and that either M-factor signaling or P-factor signaling alone is sufficient.


2019 ◽  
Vol 112 (6) ◽  
pp. 1701-1717 ◽  
Author(s):  
Stevin Wilson ◽  
Yi‐Hsuan Liu ◽  
Carlos Cardona‐Soto ◽  
Vibhuti Wadhwa ◽  
Mark P. Foster ◽  
...  

Chromosoma ◽  
2008 ◽  
Vol 118 (1) ◽  
pp. 99-112 ◽  
Author(s):  
Jenny Alfredsson-Timmins ◽  
Carolina Kristell ◽  
Frida Henningson ◽  
Sara Lyckman ◽  
Pernilla Bjerling

1990 ◽  
Vol 10 (12) ◽  
pp. 6791-6798 ◽  
Author(s):  
H L Levin ◽  
D C Weaver ◽  
J D Boeke

Two related families of transposons were isolated from schizosaccharomyces pombe, an organism which has been the object of extensive genetic studies which had previously produced no evidence for the existence of such elements. These two classes of repeated DNAs, dubbed Tf1 (transposon of fission yeast 1) and Tf2 have many properties of retrotransposons. Tf1 and Tf2 both possess long terminal repeats and predicted protein sequences that resemble the protease, reverse transcriptase, and integrase domains of retroviruses. The chromosomal locations and total numbers of Tf1 and Tf2 differ greatly in various isolates of S. pombe. The Tf elements are expressed in the form of 4.5-kb mRNAs. The complete sequence of Tf1 was determined and suggests that a novel mechanism for regulating its gene expression may be used.


1997 ◽  
Vol 17 (6) ◽  
pp. 3356-3363 ◽  
Author(s):  
G Degols ◽  
P Russell

Exposure of mammalian cells to UV irradiation or alkylating agents leads to the activation of the c-Jun N-terminal kinase and p38 stress-activated protein kinase cascades, phosphorylation of c-Jun and ATF-2 bZIP transcription factors, and finally to selective induction of gene expression. This UV response is believed to be crucially important for cell survival, although conclusive evidence is lacking. Here, we address this issue by investigating a homologous UV response pathway in the fission yeast Schizosaccharomyces pombe. In fission yeast cells, UV irradiation induces activation of Spc1 stress-activated protein kinase, which in turn phosphorylates the Atf1 bZIP transcription factor. spc1 mutants are hypersensitive to killing by UV at a level equivalent to some checkpoint rad mutants. Whereas checkpoint rad mutants fail to arrest division in response to DNA damage, spc1 mutants are defective at resuming cell division after UV exposure. Levels of basal and UV-induced transcription of ctt1+, which encodes a catalase believed important for combating oxidative stress caused by UV, are extremely low in spc1 mutants. Atf1 is required for UV-induced transcription of ctt1+, but atf1 mutants are not hypersensitive to killing by UV. This surprising finding is explained by the observation that ctt1+ basal expression is unaffected in atf1 single mutant and spc1 atf1 double mutant cells, suggesting that unphosphorylated Atf1 represses ctt1+ expression in spc1 cells. In fact, the level of UV sensitivity of spc1 atf1 double mutant cells is intermediate between those of the wild type and spc1 mutants. These findings suggest the following. (i) Key properties of UV response mechanisms are remarkably similar in mammals and S. pombe. (ii) Activation of Spc1 kinase greatly enhances survival of UV-irradiated cells. (iii) Induction of gene expression by activation of Atf1 may not be the most important mechanism by which stress-activated kinases function in the UV response.


1996 ◽  
Vol 24 (4) ◽  
pp. 515S-515S
Author(s):  
Carme Gallego ◽  
Neus Colomina ◽  
Eloi Gari ◽  
Enrique Herrero ◽  
Martí Aldea

Sign in / Sign up

Export Citation Format

Share Document