scholarly journals Schizosaccharomyces pombe map3+ encodes the putative M-factor receptor.

1993 ◽  
Vol 13 (1) ◽  
pp. 80-88 ◽  
Author(s):  
K Tanaka ◽  
J Davey ◽  
Y Imai ◽  
M Yamamoto

A defect in the map3 gene of the fission yeast Schizosaccharomyces pombe causes h+ mating-type-specific sterility. This gene was cloned by complementation. Nucleotide sequence analysis showed that it has a coding capacity of 365 amino acids. The deduced map3 gene product is a putative seven-transmembrane protein and has 20.0% amino acid identity with the a-factor receptor of Saccharomyces cerevisiae, encoded by STE3. It is also homologous with the Ustilago maydis mating pheromone receptors. The map3 gene is expressed in h+ cells but not in h- cells, and the transcripts are induced in response to nitrogen starvation. h+ cells defective in map3 do not respond to purified M-factor. When map3 is expressed ectopically in h- cells, they apparently acquire the ability to respond to the M-factor produced by themselves. The gpa1 gene, which encodes the alpha-subunit of a G-protein presumed to couple with the mating pheromone receptors, is essential for this function of map3. These observations strongly suggest that map3 encodes the M-factor receptor. Furthermore, this study provides strong support for the notion that pheromone signaling is essential for initiation of meiosis in S. pombe and that either M-factor signaling or P-factor signaling alone is sufficient.

1993 ◽  
Vol 13 (1) ◽  
pp. 80-88
Author(s):  
K Tanaka ◽  
J Davey ◽  
Y Imai ◽  
M Yamamoto

A defect in the map3 gene of the fission yeast Schizosaccharomyces pombe causes h+ mating-type-specific sterility. This gene was cloned by complementation. Nucleotide sequence analysis showed that it has a coding capacity of 365 amino acids. The deduced map3 gene product is a putative seven-transmembrane protein and has 20.0% amino acid identity with the a-factor receptor of Saccharomyces cerevisiae, encoded by STE3. It is also homologous with the Ustilago maydis mating pheromone receptors. The map3 gene is expressed in h+ cells but not in h- cells, and the transcripts are induced in response to nitrogen starvation. h+ cells defective in map3 do not respond to purified M-factor. When map3 is expressed ectopically in h- cells, they apparently acquire the ability to respond to the M-factor produced by themselves. The gpa1 gene, which encodes the alpha-subunit of a G-protein presumed to couple with the mating pheromone receptors, is essential for this function of map3. These observations strongly suggest that map3 encodes the M-factor receptor. Furthermore, this study provides strong support for the notion that pheromone signaling is essential for initiation of meiosis in S. pombe and that either M-factor signaling or P-factor signaling alone is sufficient.


1996 ◽  
Vol 20 (1) ◽  
pp. 35-42 ◽  
Author(s):  
Graham Ladds ◽  
Erik Michael Rasmussen ◽  
Tom Young ◽  
Olaf Nielsen ◽  
John Davey

1995 ◽  
Vol 6 (9) ◽  
pp. 1185-1195 ◽  
Author(s):  
J Kanoh ◽  
A Sugimoto ◽  
M Yamamoto

We isolated the Schizosaccharomyces pombe zfs1 gene as a multicopy suppressor of the sterility caused by overexpression of a double-stranded RNase. The deduced zfs1 gene product of 404 amino acids showed similarity to a mouse growth factor-inducible nuclear protein Nup475. Its C-terminal region carried two putative zinc-fingers, both of which should be intact for the protein to be functional as the suppressor. This protein appeared to localize in nuclei. Disruption of zfs1 was not lethal but conferred deficiency in mating and sporulation. Activation of transcription in response to the mating pheromone signaling was greatly reduced in the zfs1-disrupted cells. The mating deficiency of the zfs1-disruptant was suppressed partially by overexpression of either gpa1, ras1, byr1, or byr2, which are involved in the transmission of the pheromone signal. Disruption of zfs1 reduced both hypersensitivity of the ras1Val17 mutant to the mating pheromone and uncontrolled mating response caused by mutational activation of Gpa1, the G protein alpha subunit coupled to the mating pheromone receptors. However, overexpression of zfs1 could not bypass complete loss of function of either gpa1, ras1, byr1, or byr2. These observations indicate that the function of zfs1 is involved in the mating pheromone signaling pathway, and are consistent with its function being required to fully activate a factor in this pathway, either directly or indirectly.


Genetics ◽  
1998 ◽  
Vol 149 (2) ◽  
pp. 879-892 ◽  
Author(s):  
Anatoly V Grishin ◽  
Michael Rothenberg ◽  
Maureen A Downs ◽  
Kendall J Blumer

Abstract In the yeast Saccharomyces cerevisiae, mating pheromone response is initiated by activation of a G protein- and mitogen-activated protein (MAP) kinase-dependent signaling pathway and attenuated by several mechanisms that promote adaptation or desensitization. To identify genes whose products negatively regulate pheromone signaling, we screened for mutations that suppress the hyperadaptive phenotype of wild-type cells overexpressing signaling-defective G protein β subunits. This identified recessive mutations in MOT3, which encodes a nuclear protein with two Cys2-His2 Zn fingers. MOT3 was found to be a dosage-dependent inhibitor of pheromone response and pheromone-induced gene expression and to require an intact signaling pathway to exert its effects. Several results suggested that Mot3 attenuates expression of pheromone-responsive genes by mechanisms distinct from those used by the negative transcriptional regulators Cdc36, Cdc39, and Mot2. First, a Mot3-lexA fusion functions as a transcriptional activator. Second, Mot3 is a dose-dependent activator of several genes unrelated to pheromone response, including CYC1, SUC2, and LEU2. Third, insertion of consensus Mot3 binding sites (C/A/T)AGG(T/C)A activates a promoter in a MOT3-dependent manner. These findings, and the fact that consensus binding sites are found in the 5′ flanking regions of many yeast genes, suggest that Mot3 is a globally acting transcriptional regulator. We hypothesize that Mot3 regulates expression of factors that attenuate signaling by the pheromone response pathway.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 155-165 ◽  
Author(s):  
Janet M Murray ◽  
Douglas I Johnson

Abstract The Cdc42p GTPase and its regulators, such as the Saccharomyces cerevisiae Cdc24p guanine-nucleotide exchange factor, control signal-transduction pathways in eukaryotic cells leading to actin rearrangements. A cross-species genetic screen was initiated based on the ability of negative regulators of Cdc42p to reverse the Schizosaccharomyces pombe Cdc42p suppression of a S. cerevisiae cdc24ts mutant. A total of 32 S. pombe nrf (negative regulator of Cdc forty two) cDNAs were isolated that reversed the suppression. One cDNA, nrf1+, encoded an ~15 kD protein with three potential transmembrane domains and 78% amino-acid identity to a S. cerevisiae gene, designated NRF1. A S. pombe Δnrf1 mutant was viable but overexpression of nrf1+ in S. pombe resulted in dose-dependent lethality, with cells exhibiting an ellipsoidal morphology indicative of loss of polarized cell growth along with partially delocalized cortical actin and large vacuoles. nrf1+ also displayed synthetic overdose phenotypes with cdc42 and pak1 alleles. Green fluorescent protein (GFP)-Cdc42p and GFP-Nrf1p colocalized to intracellular membranes, including vacuolar membranes, and to sites of septum formation during cytokinesis. GFP-Nrf1p vacuolar localization depended on the S. pombe Cdc24p homolog Scd1p. Taken together, these data are consistent with Nrf1p functioning as a negative regulator of Cdc42p within the cell polarity pathway.


2010 ◽  
Vol 54 (11) ◽  
pp. 4772-4779 ◽  
Author(s):  
Ying Zhang ◽  
Qiyu Bao ◽  
Luc A. Gagnon ◽  
Ann Huletsky ◽  
Antonio Oliver ◽  
...  

ABSTRACT In enterobacteria, the ampG gene encodes a transmembrane protein (permease) that transports 1,6-GlcNAc-anhydro-MurNAc and the 1,6-GlcNAc-anhydro-MurNAc peptide from the periplasm to the cytoplasm, which serve as signal molecules for the induction of ampC β-lactamase. The role of AmpG as a transporter is also essential for cell wall recycling. Pseudomonas aeruginosa carries two AmpG homologues, AmpG (PA4393) and AmpGh1 (PA4218), with 45 and 41% amino acid sequence identity, respectively, to Escherichia coli AmpG, while the two homologues share only 19% amino acid identity. In P. aeruginosa strains PAO1 and PAK, inactivation of ampG drastically repressed the intrinsic β-lactam resistance while ampGh1 deletion had little effect on the resistance. Further, deletion of ampG in an ampD-null mutant abolished the high-level β-lactam resistance that is associated with the loss of AmpD activity. The cloned ampG gene is able to complement both the P. aeruginosa and the E. coli ampG mutants, while that of ampGh1 failed to do so, suggesting that PA4393 encodes the only functional AmpG protein in P. aeruginosa. We also demonstrate that the function of AmpG in laboratory strains of P. aeruginosa can effectively be inhibited by carbonyl cyanide m-chlorophenylhydrazone (CCCP), causing an increased sensitivity to β-lactams among laboratory as well as clinical isolates of P. aeruginosa. Our results suggest that inhibition of the AmpG activity is a potential strategy for enhancing the efficacy of β-lactams against P. aeruginosa, which carries inducible chromosomal ampC, especially in AmpC-hyperproducing clinical isolates.


2008 ◽  
Vol 82 (24) ◽  
pp. 12384-12391 ◽  
Author(s):  
Amanda R. Howard ◽  
Tatiana G. Senkevich ◽  
Bernard Moss

ABSTRACT During vaccinia virus replication, mature virions (MVs) are wrapped with cellular membranes, transported to the periphery, and exported as extracellular virions (EVs) that mediate spread. The A26 protein is unusual in that it is present in MVs but not EVs. This distribution led to a proposal that A26 negatively regulates wrapping. A26 also has roles in the attachment of MVs to the cell surface and incorporation of MVs into proteinaceous A-type inclusions in some orthopoxvirus species. However, A26 lacks a transmembrane domain, and nothing is known regarding how it associates with the MV, regulates incorporation of the MV into inclusions, and possibly prevents EV formation. Here, we provide evidence that A26 forms a disulfide-bonded complex with A27 that is anchored to the MV through a noncovalent interaction with the A17 transmembrane protein. In the absence of A27, A26 was unstable, and only small amounts were detected. The interaction of A26 with A27 depended on a C-terminal segment of A26 with 45% amino acid identity to A27. Deletion of A26 failed to enhance EV formation by vaccinia virus, as had been predicted. Nevertheless, the interaction of A26 and A27 may have functional significance, since each is thought to mediate binding to cells through interaction with laminin and heparan sulfate, respectively. We also found that A26 formed a noncovalent complex with A25, a truncated form of the cowpox virus A-type inclusion matrix protein. The latter association suggests a mechanism for incorporation of virions into A-type inclusions in other orthopoxvirus strains.


1985 ◽  
Vol 5 (11) ◽  
pp. 3024-3034
Author(s):  
E T Young ◽  
D Pilgrim

The Saccharomyces cerevisiae nuclear gene, ADH3, that encodes the mitochondrial alcohol dehydrogenase isozyme ADH III was cloned by virtue of its nucleotide homology to ADH1 and ADH2. Both chromosomal and plasmid-encoded ADH III isozymes were repressed by glucose and migrated heterogeneously on nondenaturing gels. Nucleotide sequence analysis indicated 73 and 74% identity for ADH3 with ADH1 and ADH2, respectively. The amino acid identity between the predicted ADH III polypeptide and ADH I and ADH II was 79 and 80%, respectively. The open reading frame encoding ADH III has a highly basic 27-amino-acid amino-terminal extension relative to ADH I and ADH II. The nucleotide sequence of the presumed leader peptide has a high degree of identity with the untranslated leader regions of ADH1 and ADH2 mRNAs. A strain containing a null allele of ADH3 did not have a detectably altered phenotype. The cloned gene integrated at the ADH3 locus, indicating that this is the structural gene for ADH III.


1996 ◽  
Vol 40 (11) ◽  
pp. 2500-2504 ◽  
Author(s):  
D Lyras ◽  
J I Rood

The Tet P determinant from the conjugative Clostridium perfringens R plasmid pCW3 two functional overlapping tetracycline resistance genes, tetA(P) and tetB(P). The tetA(P) gene encodes a putative 46-kDa transmembrane protein which mediates active efflux of tetracycline from the cell, while tetB(P) encodes a putative 72.6-kDa protein which has significant similarity to Tet M-like tetracycline resistance proteins (J. Sloan, L.M. McMurry, D. Lyras, S. B. Levy, and J. I. Rood, Mol. Microbiol. 11:403-415, 1994). In the present study, hybridization and PCR analysis of 81 tetracycline-resistant isolates of C. perfringens showed that they all carried the tetA(P) gene. Most of these isolates (93%) carried a second tetracycline resistance gene, with 53% carrying tetB(P) and 40% carrying a tet(M)-like gene. Despite the wide distribution of the tetB(P) and tet(M) genes, no isolate which carried both of these determinants was detected. In isolates that carried both tetA(P) and tetB(P) these genes overlapped, as in pCW3. Isolates carrying this combination of genes originated from diverse geographical locations and environmental sources. The single Clostridium paraputrificum isolate examined carried tetA(P), indicating that this gene is not confined to C.perfringens. However, neither tetA(P) nor tetB(P) was detected in the nine Clostridium difficile isolates tested. Nucleotide sequence analysis of isolates lacking tetB(P) revealed that they contained the tetA408(P) gene, which lacked the codons for the 12 carboxy-terminal amino acids of the TetA(P) protein.


Sign in / Sign up

Export Citation Format

Share Document