pheromone signaling
Recently Published Documents


TOTAL DOCUMENTS

110
(FIVE YEARS 19)

H-INDEX

32
(FIVE YEARS 3)

2021 ◽  
Author(s):  
Masashi Nambu ◽  
Atsuki Kishikawa ◽  
Takatomi Yamada ◽  
Kento Ichikawa ◽  
Yunosuke Kira ◽  
...  

Kinetochores drive chromosome segregation by mediating chromosome interactions with the spindle. In higher eukaryotes, sister kinetochores are separately positioned on opposite sides of sister centromeres during mitosis, but associate with each other during meiosis I. Kinetochore association facilitates the attachment of sister chromatids to the same pole, enabling the segregation of homologous chromosomes toward opposite poles. In the fission yeast, Schizosaccharomyces pombe, Rec8-containing meiotic cohesin is suggested to establish kinetochore associations by mediating cohesion of the centromere cores. However, cohesin-mediated kinetochore associations on intact chromosomes have never been demonstrated directly. Here, we describe a novel method for the direct evaluation of kinetochore associations on intact chromosomes in live S. pombe cells, and demonstrate that sister kinetochores and the centromere cores are positioned separately on mitotic chromosomes but associate with each other on meiosis I chromosomes. Furthermore, we demonstrate that kinetochore association depends on meiotic cohesin and the cohesin regulators, Moa1 and Mrc1, and requires mating-pheromone signaling for its establishment. These results confirm cohesin-mediated kinetochore association and its regulatory mechanisms, along with the usefulness of the developed method for its analysis.


Cell Reports ◽  
2021 ◽  
Vol 37 (13) ◽  
pp. 110186
Author(s):  
Ignacio Garcia ◽  
Sara Orellana-Muñoz ◽  
Lucía Ramos-Alonso ◽  
Aram N. Andersen ◽  
Christine Zimmermann ◽  
...  

2021 ◽  
Author(s):  
Benedikt K Steinfeld ◽  
Qinna Cui ◽  
Tamara Schmidt ◽  
Ilka B Bischofs

Bacterial populations frequently encounter potentially lethal environmental stress factors. Growing Bacillus subtilis populations are comprised of a mixture of "motile" and "sessile" cells but how this affects population-level fitness under stress is poorly understood. Here, we show that, unlike sessile cells, motile cells are readily killed by monovalent cations under conditions of nutrient deprivation - owing to elevated expression of the lytABC operon, which codes for a cell-wall lytic complex. Forced induction of the operon in sessile cells also causes lysis. We demonstrate that population composition is regulated by the quorum sensing regulator ComA, which can favor either the motile or the sessile state. Specifically social interactions by ComX-pheromone signaling enhance population-level fitness under stress. Our study highlights the importance of characterizing population composition and cellular properties for studies of bacterial physiology and functional genomics. Our findings open new perspectives for understanding the functions of autolysins and collective behaviors that are coordinated by chemical and electrical signals, with implications for multicellular development and biotechnology.


2021 ◽  
Author(s):  
Pelin C Volkan ◽  
Bryson Deanhardt ◽  
Qichen Duan ◽  
Chengcheng Du ◽  
Charles Soeder ◽  
...  

Social experience and pheromone signaling in ORNs affect pheromone responses and male courtship behaviors in Drosophila, however, the molecular mechanisms underlying this circuit-level neuromodulation remain less clear. Previous studies identified social experience and pheromone signaling-dependent modulation of chromatin around behavioral switch gene fruitless, which encodes a transcription factor necessary and sufficient for male behaviors. To identify the molecular mechanisms driving social experience-dependent neuromodulation, we performed RNA-seq from antennal samples of mutant fruit flies in pheromone receptors and fruitless, as well as grouped or isolated wild-type males. We found that loss of pheromone detection differentially alters the levels of fruitless exons suggesting changes in splicing patterns. In addition, many Fruitless target neuromodulatory genes, such as neurotransmitter receptors, ion channels, and ion transporters, are differentially regulated by social context and pheromone signaling. Our results suggest that modulation of circuit activity and behaviors in response to social experience and pheromone signaling arise due to changes in transcriptional programs for neuromodulators downstream of behavioral switch gene function.


2021 ◽  
Author(s):  
Ignacio Garcia ◽  
Sara Munoz ◽  
Pierre Chymkowitch ◽  
Manolis Papamichos-Chronakis ◽  
Aram Nikolai Andersen ◽  
...  

Mechanisms have evolved that allow cells to detect signals and generate an appropriate response. The accuracy of these responses relies on the ability of cells to discriminate between signal and noise. How cells filter noise in signaling pathways is not well understood. We have analyzed noise suppression in the yeast pheromone signaling pathway. By combining synthetic genetic array screening, mass spectrometry and single-cell time-resolved microscopy, we discovered that the poorly characterized protein Kel1 serves as a major noise suppressor of the pathway. At the molecular level, Kel1 suppresses spontaneous activation of the pheromone response by inhibiting membrane recruitment of Ste5 and Far1. Kel1 is regulated by phosphorylation, and only the hypophosphorylated form of Kel1 suppresses signaling, reduces noise and prevents pheromone-associated cell death. Our data indicate that in response to pheromone the MAPKs Fus3 and Kss1 phosphorylate Kel1 to relieve inhibition of the pheromone pathway. Taken together, Kel1 serves as a phospho-regulated suppressor of the pheromone pathway to reduce noise, inhibit spontaneous activation of the pathway, regulate mating efficiency and to prevent pheromone-associated cell death.


2021 ◽  
Author(s):  
Ignacio Garcia ◽  
Sara Munoz ◽  
Pierre Chymkowitch ◽  
Manolis Papamichos-Chronakis ◽  
Aram Nikolai Andersen ◽  
...  

Genetics ◽  
2020 ◽  
Vol 217 (2) ◽  
Author(s):  
Sheng-An Chen ◽  
Hung-Che Lin ◽  
Frank C Schroeder ◽  
Yen-Ping Hsueh

Abstract Detection of surrounding organisms in the environment plays a major role in the evolution of interspecies interactions, such as predator–prey relationships. Nematode-trapping fungi (NTF) are predators that develop specialized trap structures to capture, kill, and consume nematodes when food sources are limited. Despite the identification of various factors that induce trap morphogenesis, the mechanisms underlying the differentiation process have remained largely unclear. Here, we demonstrate that the highly conserved pheromone-response MAPK pathway is essential for sensing ascarosides, a conserved molecular signature of nemaotdes, and is required for the predatory lifestyle switch in the NTF Arthrobotrys oligospora. Gene deletion of STE7 (MAPKK) and FUS3 (MAPK) abolished nematode-induced trap morphogenesis and conidiation and impaired the growth of hyphae. The conserved transcription factor Ste12 acting downstream of the pheromone-response pathway also plays a vital role in the predation of A. oligospora. Transcriptional profiling of a ste12 mutant identified a small subset of genes with diverse functions that are Ste12 dependent and could trigger trap differentiation. Our work has revealed that A. oligospora perceives and interprets the ascarosides produced by nematodes via the conserved pheromone signaling pathway in fungi, providing molecular insights into the mechanisms of communication between a fungal predator and its nematode prey.


2020 ◽  
Vol 14 ◽  
Author(s):  
Dana Rubi Levy ◽  
Yizhak Sofer ◽  
Vlad Brumfeld ◽  
Noga Zilkha ◽  
Tali Kimchi
Keyword(s):  

2020 ◽  
Vol 11 ◽  
Author(s):  
Sarah Schmidt ◽  
Ramona Märker ◽  
Barbara Ramšak ◽  
Anna M. Beier-Rosberger ◽  
Ines Teichert ◽  
...  

Cell Cycle ◽  
2020 ◽  
Vol 19 (14) ◽  
pp. 1707-1715
Author(s):  
Frank Van Drogen ◽  
Nicolas Dard ◽  
Serge Pelet ◽  
Sung Sik Lee ◽  
Ranjan Mishra ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document