scholarly journals Determining the magnetic field in the core-mantle boundary zone by non-harmonic downward continuation

2002 ◽  
Vol 149 (2) ◽  
pp. 374-389 ◽  
Author(s):  
L. Ballani ◽  
H. Greiner-Mai ◽  
D. Stromeyer
Fluids ◽  
2021 ◽  
Vol 6 (11) ◽  
pp. 403
Author(s):  
John V. Shebalin

The Earth’s magnetic field is measured on and above the crust, while the turbulent dynamo in the outer core produces magnetic field values at the core–mantle boundary (CMB). The connection between the two sets of values is usually assumed to be independent of the electrical conductivity in the mantle. However, the turbulent magnetofluid in the Earth’s outer core produces a time-varying magnetic field that must induce currents in the lower mantle as it emerges, since the mantle is observed to be electrically conductive. Here, we develop a model to assess the possible effects of mantle electrical conductivity on the magnetic field values at the CMB. This model uses a new method for mapping the geomagnetic field from the Earth’s surface to the CMB. Since numerical and theoretical results suggest that the turbulent magnetic field in the outer core as it approaches the CMB is mostly parallel to this boundary, we assume that this property exists and set the normal component of the model magnetic field to zero at the CMB. This leads to a modification of the Mauersberger–Lowes spectrum at the CMB so that it is no longer flat, i.e., the modified spectrum depends on mantle conductance. We examined several cases in which mantle conductance ranges from low to high in order to gauge how CMB magnetic field strength and mantle ohmic heat generation may vary.


Sign in / Sign up

Export Citation Format

Share Document