scholarly journals The application of artificial neural networks to magnetotelluric time-series analysis

2003 ◽  
Vol 153 (2) ◽  
pp. 409-423 ◽  
Author(s):  
C. Manoj ◽  
Nandini Nagarajan
Author(s):  
Sameer Al-Asheh ◽  
Farouq Sabri Mjalli ◽  
Hassan E. Alfadala

We consider the problem of predicting the future behavior of wastewater treatment plant quality indicators by creating prediction models using historical plant data. One of the main aims of this work is to be able to predict plant operational situations in advance so that corrective actions can be taken in time. Sets of historical plant data, such as BOD, COD and TSS were collected for a local wastewater treatment plant in Doha, the capital of the State of Qatar. These variables characterize the performance of any wastewater treatment plant and can be considered as quality indicators of the plant performance. Data were collected over a period of 4 years for the influent and effluent streams of the station. The plant influent and effluent predictions were performed using different techniques. These include time-series analysis, where the ARIMA (Autoregressive Integrated Moving Average) model was implemented in this case, and two Artificial Neural Networks (ANN) algorithms, namely Adaptive Linear Neuron networks (ADALINE) and Multi-layer Feedforward (ML-FF) neural networks. The predictions from the three techniques were presented and compared. The ML-FF model predictions proved to be more reliable than that of the equivalent ARIMA predictions followed by the ADALINE predictions, particularly for the finial effluent stream variables.


2016 ◽  
Vol 9 (1) ◽  
pp. 53-62 ◽  
Author(s):  
R. D. García ◽  
O. E. García ◽  
E. Cuevas ◽  
V. E. Cachorro ◽  
A. Barreto ◽  
...  

Abstract. This paper presents the reconstruction of a 73-year time series of the aerosol optical depth (AOD) at 500 nm at the subtropical high-mountain Izaña Atmospheric Observatory (IZO) located in Tenerife (Canary Islands, Spain). For this purpose, we have combined AOD estimates from artificial neural networks (ANNs) from 1941 to 2001 and AOD measurements directly obtained with a Precision Filter Radiometer (PFR) between 2003 and 2013. The analysis is limited to summer months (July–August–September), when the largest aerosol load is observed at IZO (Saharan mineral dust particles). The ANN AOD time series has been comprehensively validated against coincident AOD measurements performed with a solar spectrometer Mark-I (1984–2009) and AERONET (AErosol RObotic NETwork) CIMEL photometers (2004–2009) at IZO, obtaining a rather good agreement on a daily basis: Pearson coefficient, R, of 0.97 between AERONET and ANN AOD, and 0.93 between Mark-I and ANN AOD estimates. In addition, we have analysed the long-term consistency between ANN AOD time series and long-term meteorological records identifying Saharan mineral dust events at IZO (synoptical observations and local wind records). Both analyses provide consistent results, with correlations  >  85 %. Therefore, we can conclude that the reconstructed AOD time series captures well the AOD variations and dust-laden Saharan air mass outbreaks on short-term and long-term timescales and, thus, it is suitable to be used in climate analysis.


Sign in / Sign up

Export Citation Format

Share Document