scholarly journals Poly(A) polymerase I of Escherichia coli: characterization of the catalytic domain, an RNA binding site and regions for the interaction with proteins involved in mRNA degradation

1999 ◽  
Vol 32 (4) ◽  
pp. 765-775 ◽  
Author(s):  
Lelia C. Raynal ◽  
Agamemnon J. Carpousis
1972 ◽  
Vol 114 (1) ◽  
pp. 1-8 ◽  
Author(s):  
H. W. Schaup ◽  
M. Sogin ◽  
C. Woese ◽  
C. G. Kurland

1994 ◽  
Vol 244 (1) ◽  
pp. 74-85 ◽  
Author(s):  
François Dragon ◽  
Catherine Payant ◽  
Léa Brakier-Gingras

1986 ◽  
Vol 159 (3) ◽  
pp. 605-609 ◽  
Author(s):  
Isabella CRENON ◽  
Daniel LADANT ◽  
Nicole GUISO ◽  
Anne-Marie GILLES ◽  
Octavian BARZU

Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 5056-5056 ◽  
Author(s):  
Julia Fremerey ◽  
Pavel Morozov ◽  
Cindy Meyer ◽  
Aitor Garzia ◽  
Marianna Teplova ◽  
...  

Abstract Introduction Nucleolin (NCL) is a multifunctional, proliferation-associated factor that is overexpressed in many cancers and has already been demonstrated to play a profound role in leukemogenesis (Abdelmohsen and Gorospe, 2012; Shen et al., 2014). This can be linked to an increased synthesis of ribosomal RNA (rRNA). Thus, in leukemic cells, high expression levels of NCL contribute to malignant transformation through the increase of rRNA synthesis, which is required to sustain high levels of protein synthesis. Physiologically, NCL is a highly abundant, nucleolar RNA-binding protein that is implicated in the regulation of polymerase I transcription, post-transcriptional gene regulation, and plays a central role in ribosome biogenesis (Srivastava and Pollard, 1999). To further elucidate the exact role of NCL, this study focused on the characterization of the RNA-binding properties and protein-interactions of NCL in the context of ribosome biogenesis. Methods In order to identify transcriptome-wide binding sites and the cellular RNA targets of NCL, PAR-CLIP (photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation) and RIP-Seq (RNA immunoprecipitation sequencing) analyses were carried out in HEK 293 cells. PAR-CLIP is characterized by the incorporation of 4-thiouridine into newly transcribed RNA that causes a T to C conversion in the corresponding cDNA of crosslinked RNA (Hafner et al., 2010). The RNA-binding properties and the interaction of NCL with its identified RNA targets were elucidated by electrophoretic mobility shift assays, isothermal titration calorimetry and size-exclusion chromatography. To further define the role of NCL in ribosome biogenesis and the effect on precursor rRNA levels, siRNA mediated knockdown of NCL was employed followed by RNA sequencing. Furthermore, to characterize the interaction network of NCL on a proteome-wide level, mass-spectrometry was performed. Results This study focuses on the characterization of the RNA-binding properties of NCL and provides the first PAR-CLIP data set of NCL and identifies small nucleolar RNAs (snoRNA) and precursor rRNA as main targets of NCL, both of which were further confirmed by RIP-Seq analysis. Binding sites of NCL were identified in the 5'ETS (external transcribed spacer), after the first cleavage site, in ITS1 and ITS2 (internal transcribed spacer) within the precursor rRNA, indicating that NCL might play a role in the early processing steps of ribosome biogenesis within the nucleolus. Biochemical and structural binding analyses reveal that NCL interacts along the complete precursor region and shows high binding affinity to G/C/U-rich repeat sequences, which is in agreement with the nucleotide composition of the primary rRNA transcript. Moreover, we propose that siRNA mediated knockdown of NCL inhibits polymerase I transcription, which is shown by decreased expression levels of the precursor rRNA transcript. On the proteome-wide level, mass-spectrometry analysis of NCL identified several interaction partners including block of proliferation 1 (BOP1), DEAD-box RNA helicase 18 (DDX18), and 5'-3' exoribonuclease 2 (XRN2) and numerous ribosomal proteins of the small and the large ribosomal subunits including RPS24, RPL11, RPL35A, and RPL36. Conclusion This study provides evidence that NCL is highly associated with the process of ribosome biogenesis on the proteome- and transcriptome-wide level. Therefore, NCL might serve as a promising biochemical target in the context of increased ribosome biogenesis in cancer. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document