Inhibition of in vitro growth of Plasmodium falciparum field isolates mediated by human antibodies to Pf155/RESA and Pf332

1999 ◽  
Vol 21 (6) ◽  
pp. 331-334 ◽  
Author(s):  
BIRGITTA WAHLIN FLYG ◽  
ABU BAKAR SIDDIQUE ◽  
PETER PERLMANN ◽  
FULVIO ESPOSITO ◽  
KLAVS BERZINS
2003 ◽  
Vol 68 (6) ◽  
pp. 728-733 ◽  
Author(s):  
AHMED BOLAD ◽  
ALFRED TRAORE ◽  
KLAVS BERZINS ◽  
NADINE CUZIN-OUATTARA ◽  
ISSA NEBIÉ ◽  
...  

1998 ◽  
Vol 42 (1) ◽  
pp. 164-169 ◽  
Author(s):  
A. Nzila-Mounda ◽  
E. K. Mberu ◽  
C. H. Sibley ◽  
C. V. Plowe ◽  
P. A. Winstanley ◽  
...  

ABSTRACT Sixty-nine Kenyan Plasmodium falciparum field isolates were tested in vitro against pyrimethamine (PM), chlorcycloguanil (CCG), sulfadoxine (SD), and dapsone (DDS), and their dihydrofolate reductase (DHFR) genotypes were determined. The in vitro data show that CCG is more potent than PM and that DDS is more potent than SD. DHFR genotype is correlated with PM and CCG drug response. Isolates can be classified into three distinct groups based on their 50% inhibitory concentrations (IC50s) for PM and CCG (P< 0.01) and their DHFR genotypes. The first group consists of wild-type isolates with mean PM and CCG IC50s of 3.71 ± 6.94 and 0.24 ± 0.21 nM, respectively. The second group includes parasites which all have mutations at codon 108 alone or also at codons 51 or 59 and represents one homogeneous group for which 25- and 6-fold increases in PM and CCG IC50s, respectively, are observed. Parasites with mutations at codons 108, 51, and 59 (triple mutants) form a third distinct group for which nine- and eightfold increases in IC50s, respectively, of PM and CCG compared to the second group are observed. Surprisingly, there is a significant decrease (P < 0.01) of SD and DDS susceptibility in these triple mutants. Our data show that more than 92% of Kenyan field isolates have undergone at least one point mutation associated with a decrease in PM activity. These findings are of great concern because they may indicate imminent PM-SD failure, and there is no affordable antimalarial drug to replace PM-SD (Fansidar).


2020 ◽  
Author(s):  
Nonlawat Boonyalai ◽  
Brian A Vesely ◽  
Chatchadaporn Thamnurak ◽  
Chantida Praditpol ◽  
Watcharintorn Fagnark ◽  
...  

Abstract Background High rates of dihydroartemisinin-piperaquine (DHA-PPQ) treatment failures have been documented for uncomplicated Plasmodium falciparum in Cambodia. The genetic markers plasmepsin 2 ( pfpm2 ), exonuclease ( pfexo ) and chloroquine resistance transporter ( pfcrt ) genes are associated with PPQ resistance and are used for monitoring the prevalence of drug resistance and guiding malaria drug treatment policy.Methods To examine the relative contribution of each marker to PPQ resistance, in vitro culture and the PPQ survival assay were performed on seventeen P. falciparum isolates from northern Cambodia, and the presence of E415G-Exo and pfcrt mutations (T93S, H97Y, F145I, I218F, M343L, C350R, and G353V) as well as pfpm2 copy number polymorphisms were determined. Parasites were then cloned by limiting dilution and the cloned parasites were tested for drug susceptibility. Isobolographic analysis of several drug combinations for standard clones and newly cloned P. falciparum Cambodian isolates was also determined.Results The characterization of culture-adapted isolates revealed that the presence of novel pfcrt mutations (T93S, H97Y, F145I, and I218F) with E415G-Exo mutation can confer PPQ-resistance, in the absence of pfpm2 amplification. In vitro testing of PPQ resistant parasites demonstrated a bimodal dose-response, the existence of a swollen digestive vacuole phenotype, and an increased susceptibility to quinine, chloroquine, mefloquine and lumefantrine. To further characterize drug sensitivity, parental parasites were cloned in which a clonal line, 14-B5, was identified as sensitive to artemisinin and piperaquine, but resistant to chloroquine. Assessment of the clone against a panel of drug combinations revealed antagonistic activity for six different drug combinations. However, mefloquine-proguanil and atovoquone-proguanil combinations revealed synergistic antimalarial activity.Conclusions Surveillance for PPQ resistance in regions relying on DHA-PPQ as the first-line treatment is dependent on the monitoring of molecular markers of drug resistance. P. falciparum harbouring novel pfcrt mutations with E415G-exo mutations displayed PPQ resistant phenotype. The presence of pfpm2 amplification was not required to render parasites PPQ resistant suggesting that the increase in pfpm2 copy number alone is not the sole modulator of PPQ resistance. Genetic background of circulating field isolates appear to play a role in drug susceptibility and biological responses induced by drug combinations. The use of latest field isolates may be necessary for assessment of relevant drug combinations against P. falciparum strains and when down-selecting novel drug candidates.


2020 ◽  
Vol 119 (6) ◽  
pp. 1879-1887
Author(s):  
Minelly Azevedo da Silva ◽  
Márcia Paranho Veloso ◽  
Kassius de Souza Reis ◽  
Guilherme de Matos Passarini ◽  
Ana Paula de Azevedo dos Santos ◽  
...  

2012 ◽  
Vol 11 (1) ◽  
pp. 325 ◽  
Author(s):  
Wiriya Rutvisuttinunt ◽  
Suwanna Chaorattanakawee ◽  
Stuart D Tyner ◽  
Paktiya Teja-isavadharm ◽  
Youry Se ◽  
...  

2014 ◽  
Vol 13 (1) ◽  
pp. 110 ◽  
Author(s):  
Marie Varela ◽  
Romy Razakandrainibe ◽  
Delphine Aldebert ◽  
Jean Barale ◽  
Ronan Jambou

Sign in / Sign up

Export Citation Format

Share Document