scholarly journals Phosphorylation of the alpha-subunits of the Na+/K+-ATPase from mammalian kidneys and Xenopus oocytes by cGMP-dependent protein kinase results in stimulation of ATPase activity

1999 ◽  
Vol 260 (3) ◽  
pp. 904-910 ◽  
Author(s):  
Heike Fotis ◽  
Liliya V. Tatjanenko ◽  
Larisa A. Vasilets
2013 ◽  
Vol 304 (9) ◽  
pp. F1210-F1216 ◽  
Author(s):  
Kristen A. Ruka ◽  
Anna P. Miller ◽  
Edward M. Blumenthal

The rate of urine secretion by insect Malpighian tubules (MTs) is regulated by multiple diuretic and antidiuretic hormones, often working either synergistically or antagonistically. In the Drosophila melanogaster MT, only diuretic factors have been reported. Two such agents are the biogenic amine tyramine (TA) and the peptide drosokinin (DK), both of which act on the stellate cells of the tubule to increase transepithelial chloride conductance. In the current study, TA and DK signaling was quantified by microelectrode recording of the transepithelial potential in isolated Drosophila MTs. Treatment of tubules with cGMP caused a significant reduction in the depolarizing responses to both TA and DK, while cAMP had no effect on these responses. To determine whether a specific cGMP-dependent protein kinase (PKG) was mediating this inhibition, PKG expression was knocked down by RNAi in either the principal cells or the stellate cells. Knockdown of Pkg21D in the stellate cells eliminated the modulation of TA and DK signaling. Knockdown of Pkg21D with a second RNAi construct also reduced the modulation of TA signaling. In contrast, knockdown of the expression of foraging or CG4839, which encodes a known and a putative PKG, respectively, had no effect. These data indicate that cGMP, acting through the Pkg21D gene product in the stellate cells, can inhibit signaling by the diuretic agents TA and DK. This represents a novel function for cGMP and PKG in the Drosophila MT and suggests the existence of an antidiuretic hormone in Drosophila .


2010 ◽  
Vol 298 (4) ◽  
pp. C875-C892 ◽  
Author(s):  
Yongping Chai ◽  
Yu-Fung Lin

The ATP-sensitive potassium (KATP) channel couples intracellular metabolic state to membrane excitability. Recently, we demonstrated that neuronal KATP channels are functionally enhanced by activation of a nitric oxide (NO)/cGMP/cGMP-dependent protein kinase (PKG) signaling cascade. In this study, we further investigated the intracellular mechanism underlying PKG stimulation of neuronal KATP channels. By performing single-channel recordings in transfected HEK293 and neuroblastoma SH-SY5Y cells, we found that the increase of Kir6.2/SUR1 (i.e., the neuronal-type KATP) channel currents by PKG activation in cell-attached patches was diminished by 5-hydroxydecanoate (5-HD), an inhibitor of the putative mitochondrial KATP channel; N-(2-mercaptopropionyl)glycine, a reactive oxygen species (ROS) scavenger, and catalase, a hydrogen peroxide (H2O2)-decomposing enzyme. These reagents also ablated NO-induced KATP channel stimulation and prevented the shifts in the single-channel open- and closed-time distributions resulting from PKG activation and NO induction. Bath application of H2O2 reproduced PKG stimulation of Kir6.2/SUR1 but did not activate tetrameric Kir6.2LRKR368/369/370/371AAAA channels. Moreover, neither the PKG activator nor exogenous H2O2 was able to enhance the function of KATP channels in the presence of Ca2+ chelators and calmodulin antagonists, whereas the stimulatory effect of H2O2 was unaffected by 5-HD. Altogether, in this report we provide novel evidence that activation of PKG stimulates neuronal KATP channels by modulating intrinsic channel gating via a 5-HD-sensitive factor(s)/ROS/Ca2+/calmodulin signaling pathway that requires the presence of the SUR1 subunit. This signaling pathway may contribute to neuroprotection against ischemic injury and regulation of neuronal excitability and neurotransmitter release by modulating the function of neuronal KATP channels.


1988 ◽  
Vol 255 (3) ◽  
pp. 855-863 ◽  
Author(s):  
M Vrolix ◽  
L Raeymaekers ◽  
F Wuytack ◽  
F Hofmann ◽  
R Casteels

The effect of phosphorylation by cyclic GMP-dependent protein kinase (G-kinase) on the activity of the plasmalemmal Ca2+-transport ATPase was studied on isolated plasma membranes and on the ATPase purified from pig erythrocytes and from the smooth muscle of pig stomach and pig aorta. Incubation with G-kinase resulted, in both smooth-muscle preparations, but not in the erythrocyte ATPase, in a higher Ca2+ affinity and in an increase in the maximal rate of Ca2+ uptake. Cyclic AMP-dependent protein kinase (A-kinase) did not exert such an effect. The stimulation of the (Ca2+ + Mg2+)-dependent ATPase activity of the purified Ca2+ pump reconstituted in liposomes depended on the phospholipid used for reconstitution. The stimulation of the (Ca2+ + Mg2+)-ATPase activity by G-kinase was only observed in the presence of phosphatidylinositol (PI). G-kinase, but not A-kinase, stimulated the phosphorylation of PI to phosphatidylinositol phosphate (PIP) in a preparation of (Ca2+ + Mg2+)-ATPase obtained by calmodulin affinity chromatography from smooth muscle, but not in a similar preparation from erythrocytes. Adenosine inhibited both the phosphorylation of PI and the stimulation of the (Ca2+ + Mg2+)-ATPase by G-kinase. In the absence of G-kinase the (Ca2+ + Mg2+)-ATPase was stimulated by the addition of PIP, but not by PI. In contrast with previous results of Furukawa & Nakamura [(1987) J. Biochem (Tokyo) 101, 287-290], no convincing evidence for a phosphorylation of the (Ca2+ + Mg2+)-ATPase was found. Evidence is presented showing that the apparent phosphorylation occurs in a contaminant protein, possibly myosin light-chain kinase. It is proposed that G-kinase stimulates the plasmalemmal Ca2+ pump of smooth-muscle cells indirectly via the phosphorylation of an associated PI kinase.


Neuropeptides ◽  
1994 ◽  
Vol 26 ◽  
pp. 3
Author(s):  
J.P. Huggins ◽  
A.J. Ganzhorn ◽  
V. Saudek ◽  
J.T. Pelton ◽  
R.A. Atkinson

1995 ◽  
Vol 307 (3) ◽  
pp. 663-668 ◽  
Author(s):  
C C H Petersen ◽  
M J Berridge

Inositol 2,4,5-trisphosphate irreversibly activated capacitative calcium entry in Xenopus oocytes, whereas guanosine thiotriphosphate (GTP[S]) and AIF4- only activated capacitative calcium entry transiently. Both GTP[S] and AIF4- inhibited capacitative calcium entry activated by thapsigargin pretreatment, but guanosine thiodiphosphate (GDP[S]), inositol 2,4,5-trisphosphate and dibutyryl cyclic GMP did not affect capacitative calcium entry. This suggests the involvement of heterotrimeric GTP-binding proteins in the regulation of capacitative calcium entry. Activation of protein kinase C or cyclic-AMP-dependent protein kinase had profound effects on capacitative calcium entry, which were consistent with the hypothesis that the effects of GTP[S] and AIF4- on capacitative calcium entry may be mediated via heterotrimeric GTP-binding protein stimulation of kinases. Further evidence for this hypothesis was derived from the result that the effects of GTP[S] on calcium entry could be inhibited by the application of the protein kinase inhibitor staurosporine.


Sign in / Sign up

Export Citation Format

Share Document