scholarly journals Evidence for Neuronal Origin and Metabotropic Receptor-Mediated Regulation of Extracellular Glutamate and Aspartate in Rat Striatum In Vivo Following Electrical Stimulation of the Prefrontal Cortex

2002 ◽  
Vol 70 (2) ◽  
pp. 617-625 ◽  
Author(s):  
Mark W. Lada ◽  
Thomas W. Vickroy ◽  
Robert T. Kennedy
1992 ◽  
Vol 12 (4) ◽  
pp. 629-637 ◽  
Author(s):  
Jayne B. Zimmerman ◽  
Robert T. Kennedy ◽  
R. Mark Wightman

Dopamine and oxygen (O2) were measured in the caudate nucleus of anesthetized rats and in striatal slices during electrical stimulation. Simultaneous electrochemical detection of dopamine and O2 was accomplished with fast-scan cyclic voltammetry at a Nafion-coated carbon-fiber microelectrode. Stimulation of the medial forebrain bundle resulted in synaptic overflow of dopamine in the caudate nucleus. At the same time, O2 concentration increased in the extracellular fluid with two separate phases. The amplitude of the initial increase directly correlated with the frequency of the stimulus, with the time of maximum concentration reproducible across a range of frequencies. The second increase occurred at later times with a more random amplitude and with a broad, variable shape. Agents which blocked vasodilation affected both phases: Atropine attenuated the initial increase, while the second feature was nearly absent after theophylline. Yohimbine and α-methyl- p-tyrosine did not affect the O2 responses. Local electrical stimulation of the slice preparation also resulted in dopamine overflow, but a prolonged decrease in O2 concentration accompanied this event. Striatal field stimulation in vivo produced changes in O2 concentration dependent on the relative position of the stimulating and working electrodes, but none of the responses resembled that seen in the caudate slice. Thus, while measurements in brain slices show O2 consumption as a result of stimulated neuronal activity, an apparent elevation of local cerebral blood flow during and after stimulation dominate the in vivo response.


Biomedicines ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 77
Author(s):  
Kristin M. Barry ◽  
Donald Robertson ◽  
Wilhelmina H. A. M. Mulders

In the adult auditory system, loss of input resulting from peripheral deafferentation is well known to lead to plasticity in the central nervous system, manifested as reorganization of cortical maps and altered activity throughout the central auditory pathways. The auditory system also has strong afferent and efferent connections with cortico-limbic circuitry including the prefrontal cortex and the question arises whether this circuitry is also affected by loss of peripheral input. Recent studies in our laboratory showed that PFC activation can modulate activity of the auditory thalamus or medial geniculate nucleus (MGN) in normal hearing rats. In addition, we have shown in rats that cochlear trauma resulted in altered spontaneous burst firing in MGN. However, whether the PFC influence on MGN is changed after cochlear trauma is unknown. We investigated the effects of electrical stimulation of PFC on single neuron activity in the MGN in anaesthetized Wistar rats 2 weeks after acoustic trauma or sham surgery. Electrical stimulation of PFC showed a variety of effects in MGN neurons both in sham and acoustic trauma groups but inhibitory responses were significantly larger in the acoustic trauma animals. These results suggest an alteration in functional connectivity between PFC and MGN after cochlear trauma. This change may be a compensatory mechanism increasing sensory gating after the development of altered spontaneous activity in MGN, to prevent altered activity reaching the cortex and conscious perception.


1999 ◽  
Vol 46 (4) ◽  
pp. 461-469 ◽  
Author(s):  
C.Q. Huang ◽  
R.K. Shepherd ◽  
P.M. Center ◽  
P.M. Seligman ◽  
B. Tabor

1983 ◽  
Vol 244 (4) ◽  
pp. E317-E322 ◽  
Author(s):  
F. Rohner-Jeanrenaud ◽  
A. C. Hochstrasser ◽  
B. Jeanrenaud

In vivo glucose-induced insulin secretion was greater in preweaned preobese 17-day-old Zucker rats than in the corresponding controls. This hypersecretion of insulin was reversed to normal by acute pretreatment with atropine. A short-lived (30 s) electrical stimulation of the vagus nerve preceding a glucose load potentiated the in vivo glucose-induced insulin release in adult animals (6-9 wk) and more so in obese Zucker (fa/fa) than in lean rats. This suggested the existence of enhanced sensitivity and/or responsiveness of the B cells of obese animals to the parasympathetic system. That the parasympathetic tone was increased in adult obese Zucker (fa/fa) rats was corroborated by the observation that acute vagotomy of these animals resulted in a significant decrease in glucose-induced insulin secretion, whereas no such effect was seen in lean rats. Also, perfused pancreases from adult obese (fa/fa) rats oversecreted insulin during a stimulation by arginine when compared with controls, an oversecretion that was restored toward normal by superimposed infusion of atropine. It is concluded that a) the increased insulin secretion of preobese Zucker fa/fa rats is an early abnormality that is mediated by the vagus nerve, and b) increased secretion of insulin in adult obese fa/fa rats continues to be partly vagus-nerve mediated, although a decreased sympathetic tone and other unknown defects could conceivably play a role as well.


Sign in / Sign up

Export Citation Format

Share Document