scholarly journals IPF, a vesicular uptake inhibitory protein factor, can reduce the Ca2+-dependent, evoked release of glutamate, GABA and serotonin

2001 ◽  
Vol 76 (4) ◽  
pp. 1153-1164 ◽  
Author(s):  
Yutaka Tamura ◽  
Eric D. Özkan ◽  
David G. Bole ◽  
Tetsufumi Ueda
2009 ◽  
Vol 77 (5) ◽  
pp. 2094-2103 ◽  
Author(s):  
Jutamas Shaughnessy ◽  
Lisa A. Lewis ◽  
Hanna Jarva ◽  
Sanjay Ram

ABSTRACT Both Neisseria meningitidis and Neisseria gonorrhoeae recruit the alternative pathway complement inhibitory protein factor H (fH) to their surfaces to evade complement-dependent killing. Meningococci bind fH via fH binding protein (fHbp), a surface-exposed lipoprotein that is subdivided into three variant families based on one classification scheme. Chimeric proteins that comprise contiguous domains of fH fused to murine Fc were used to localize the binding site for all three fHbp variants on fH to short consensus repeat 6 (SCR 6). As expected, fH-like protein 1 (FHL-1), which contains fH SCR 6, also bound to fHbp-expressing meningococci. Using site-directed mutagenesis, we identified histidine 337 and histidine 371 in SCR 6 as important for binding to fHbp. These findings may provide the molecular basis for recent observations that demonstrated human-specific fH binding to meningococci. Differences in the interactions of fHbp variants with SCR 6 were evident. Gonococci bind fH via their porin (Por) molecules (PorB.1A or PorB.1B); sialylation of lipooligosaccharide enhances fH binding. Both sialylated PorB.1B- and (unsialylated) PorB.1A-bearing gonococci bind fH through SCR 18 to 20; PorB.1A can also bind SCR 6, but only weakly, as evidenced by a low level of binding of FHL-1 relative to that of fH. Using isogenic strains expressing either meningococcal fHbp or gonococcal PorB.1B, we discovered that strains expressing gonococcal PorB.1B in the presence of sialylated lipooligosaccharide bound more fH, more effectively limited C3 deposition, and were more serum resistant than their isogenic counterparts expressing fHbp. Differences in fH binding to these two related pathogens may be important for modulating their individual responses to host immune attack.


1999 ◽  
Vol 79 ◽  
pp. 230
Author(s):  
Yutaka Tamura ◽  
Eric D. Ozkan ◽  
Hirohito Shiomi ◽  
Tetsufumi Ueda

2002 ◽  
Vol 51 (1-2) ◽  
pp. 81-91 ◽  
Author(s):  
Taku Amano ◽  
Hiroaki Matsubayashi ◽  
Eric D Özkan ◽  
Masashi Sasa ◽  
Tadao Serikawa ◽  
...  

2008 ◽  
Vol 389 (1) ◽  
pp. 13-19 ◽  
Author(s):  
Mathieu Lapointe ◽  
David Morse

Abstract The nightly bioluminescence of the dinoflagellate Gonyaulax is a circadian rhythm caused by the presence in cells of specialized bioluminescent organelles, termed scintillons, containing the reaction catalyst luciferase, the substrate luciferin and a luciferin-binding protein (LBP). LBP levels increase at the start of the night phase because of increased protein synthesis rates in vivo, and this regulation has been ascribed to circadian binding of an inhibitory protein factor binding to the 3′ untranslated region (UTR) of lbp mRNA at times when LBP is not normally synthesized. To purify and characterize the binding factor, the electrophoretic mobility shift assays and UV crosslinking experiments used to first characterize the factor were repeated. However, neither these protocols nor binding to biotinylated RNA probes confirmed the presence of a specific circadian RNA-binding protein. Furthermore, neither RNA probe screening of a cDNA library expressed in bacteria nor three-hybrid assays in yeast were successful in isolating a cDNA encoding a protein able to bind specifically to the lbp 3′UTR. Taken together, these results suggest that alternative mechanisms for regulating lbp translation should now be examined.


Planta Medica ◽  
2014 ◽  
Vol 80 (10) ◽  
Author(s):  
J Oh ◽  
H Li ◽  
WM Elshamy ◽  
MT Hamann

1987 ◽  
Vol 114 (1) ◽  
pp. 18-26 ◽  
Author(s):  
Chohei Shigeno ◽  
Itsuo Yamamoto ◽  
Shegiharu Dokoh ◽  
Megumu Hino ◽  
Jun Aoki ◽  
...  

Abstract. We have partially purified a tumour factor capable of stimulating both bone resorption in vitro and cAMP accumulation in osteoblastic ROS 17/2 cells from three human tumours associated with humoral hypercalcaemia of malignancy. Purification of tumour factor by sequential acid urea extraction, gel filtration and cation-exchange chromatography, reverse-phase high performance liquid chromatography followed by analytical isoelectric focussing provided a basic protein (pI > 9.3) with a molecular weight of approximately 13 000 as a major component of the final preparation which retained both the two bioactivities. Bone resorbing activity and cAMP-increasing activity in purified factor correlated with each other. cAMP-increasing activity of the factor was heat- and acid-stable, but sensitive to alkaline ambient pH. Treatment with trypsin destroyed cAMP-increasing activity of the factor. Synthetic parathyroid hormone (PTH) antagonist, human PTH-(3– 34) completely inhibited the cAMP-increasing activity of the factor. The results suggest that this protein factor, having its effects on both osteoclastic and osteoblastic functions, may be involved in development of enhanced bone resorption in some patients with humoral hypercalcaemia of malignancy.


Author(s):  
Natale D'Alessandro ◽  
Lydia Giannitrapani ◽  
Manuela Labbozzetta ◽  
Paola Poma ◽  
Luigi Inguglia ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document