scholarly journals Protein kinase C delta regulates neural cell adhesion molecule polysialylation state in the rat brain

2001 ◽  
Vol 77 (2) ◽  
pp. 425-434 ◽  
Author(s):  
Helen C. Gallagher ◽  
Keith J. Murphy ◽  
Andrew G. Foley ◽  
Ciaran M. Regan
1990 ◽  
Vol 10 (7) ◽  
pp. 3314-3324 ◽  
Author(s):  
A S Chen ◽  
A Reyes ◽  
R Akeson

Through analysis of rat genomic cosmid clones, the 5'-most exon of the rat neural cell adhesion molecule (NCAM) gene was identified. This exon, here named exon 0, contained the entire 5' untranslated region and the N-terminal signal sequence of the polypeptide. Exon 0 was isolated from a 1.6-kilobase (kb) EcoRI-HindIII fragment of rat genomic cosmid clone 9 which was 35 kb in length. This fragment was sequenced and found to contain approximately 940 base pairs (bp) of 5'-flanking sequence, exon 0, which was approximately 245 bp in length, and approximately 400 bp of the following intron 0. By using information derived from this fragment and the pR18 rat NCAM cDNA, the transcription initiation sites were determined with two assays. Both primer extensions and nuclease S1 protection assays of postnatal day 7 rat brain RNA identified seven initiation sites within a single 10-bp region at positions -195 to -186 relative to the translation start site. An additional minor site was found at position -329. In the immediate 5' region, no consensus TATA or CCAAT sequences were found. Potential regulatory elements within this region include Sp1 consensus binding sites and also a 178-bp homopurine-homopyrimidine sequence containing several mirror repeats. NCAM has multiple transcripts which are regulated in a developmental and tissue-specific fashion. To determine whether these transcripts are initiated at the same sites, transcription initiation sites were analyzed in postnatal day 7 and adult rat brain and also in cultured cell lines of neuronal, glial, and muscle phenotypes. These tissues and cells exhibited distinct NCAM transcript populations in Northern (RNA) dot blot analysis. In all cases similar transcription start sites were found, suggesting that all major NCAM transcripts have similar or identical initiation sites. These results provide essential information to begin analysis of NCAM regulation in different tissues and during development.


1992 ◽  
Vol 59 (3) ◽  
pp. 838-847 ◽  
Author(s):  
Lisbeth Krog ◽  
Marianne Olsen ◽  
Anne-Marie Dalseg ◽  
Jürgen Roth ◽  
Elisabeth Bock

1990 ◽  
Vol 10 (7) ◽  
pp. 3314-3324
Author(s):  
A S Chen ◽  
A Reyes ◽  
R Akeson

Through analysis of rat genomic cosmid clones, the 5'-most exon of the rat neural cell adhesion molecule (NCAM) gene was identified. This exon, here named exon 0, contained the entire 5' untranslated region and the N-terminal signal sequence of the polypeptide. Exon 0 was isolated from a 1.6-kilobase (kb) EcoRI-HindIII fragment of rat genomic cosmid clone 9 which was 35 kb in length. This fragment was sequenced and found to contain approximately 940 base pairs (bp) of 5'-flanking sequence, exon 0, which was approximately 245 bp in length, and approximately 400 bp of the following intron 0. By using information derived from this fragment and the pR18 rat NCAM cDNA, the transcription initiation sites were determined with two assays. Both primer extensions and nuclease S1 protection assays of postnatal day 7 rat brain RNA identified seven initiation sites within a single 10-bp region at positions -195 to -186 relative to the translation start site. An additional minor site was found at position -329. In the immediate 5' region, no consensus TATA or CCAAT sequences were found. Potential regulatory elements within this region include Sp1 consensus binding sites and also a 178-bp homopurine-homopyrimidine sequence containing several mirror repeats. NCAM has multiple transcripts which are regulated in a developmental and tissue-specific fashion. To determine whether these transcripts are initiated at the same sites, transcription initiation sites were analyzed in postnatal day 7 and adult rat brain and also in cultured cell lines of neuronal, glial, and muscle phenotypes. These tissues and cells exhibited distinct NCAM transcript populations in Northern (RNA) dot blot analysis. In all cases similar transcription start sites were found, suggesting that all major NCAM transcripts have similar or identical initiation sites. These results provide essential information to begin analysis of NCAM regulation in different tissues and during development.


Sign in / Sign up

Export Citation Format

Share Document