Survival and biochemical characteristics of stored red cells preserved with citrate-phosphate-dextrose-adenine-one and two and prepared from whole blood maintained at 20 to 24 degrees C for eight hours following phlebotomy

Transfusion ◽  
1984 ◽  
Vol 24 (2) ◽  
pp. 115-119 ◽  
Author(s):  
G Moroff ◽  
EE Morse ◽  
AJ Katz ◽  
RA Kahn ◽  
D Dende ◽  
...  
Biology ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 133
Author(s):  
Isabella Oliveira Barros ◽  
Rejane Santos Sousa ◽  
Marcondes Dias Tavares ◽  
Renato Otaviano Rêgo ◽  
Paulo Ricardo Firmino ◽  
...  

Hemotherapy using whole blood and its components is being increasingly used in veterinary therapy. Since it is important to store animal blood while maintaining acceptable hematological, blood gas, and biochemical characteristics, increasing our knowledge of available technologies for strategic blood storage is imperative. Thus, we aimed to assess the hematological, blood gas, and biochemical changes in donkey whole blood using blood bags with two different types of storage agents. Eight adult healthy male donkeys were used; 900 mL of blood was collected from each, with 450 mL stored in citrate-phosphate-dextrose and adenine bags (CPDA-1) and 450 mL stored in bags containing citrate-phosphate-dextrose, adenine, mannitol, and sodium chloride (CPD/SAG-M). Both bags were kept refrigerated between 1 and 6 °C for 42 days. Blood samples were removed from the bags eight times (T): T0 (immediately after blood collection), T1, T3, T7, T14, T21, T35, and T42 (1, 3, 7, 14, 21, 35 and 42 days after storage). Hematological, blood gas, biochemical, and microbiological parameters were assessed. The CPDA-1 bags had a higher packed cell volume when compared to CPD/ SAG-M. The red blood cell count reduced by around 19% in both the bags due to hemolysis, which was confirmed by an increase in plasma hemoglobin. The white blood cell count; pH; concentrations of glucose, sodium, bicarbonate, and 2,3 diphosphoglycerate were reduced in both bags. Meanwhile, pO2, pCO2, lactate dehydrogenase, and levels of potassium increased in the CPDA-1 and CPD/SAG-M bags. Blood bags were efficient for the storage of donkey blood for up to 42 days.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 448-452 ◽  
Author(s):  
JP AuBuchon ◽  
TN Estep ◽  
RJ Davey

Abstract Recent in vitro studies have shown that di-2-ethylhexyl-phthalate (DEHP) inhibits the deterioration of RBCs during refrigerated storage in containers that use this compound as a plasticizer. The experiments described in this report were designed to assess whether this in vitro protective effect of DEHP would result in a prolonged in vivo survival of RBCs infused into normal human recipients. Whole blood collected from ten normal donors was stored for 35 days in citrate-phosphate- dextrose-adenine (CPDA-1) anticoagulant contained in polyvinylchloride (PVC) bags plasticized with DEHP or a trimellitate compound that is known to have low leachability. Aliquots of RBCs from each container were then labeled with chromium-51 and were reinfused into the original donors. For blood stored in DEHP-plasticized PVC bags, 24% more red cells survived in vivo 24 hours after reinfusion than was observed when the blood had been stored in trimellitate-plasticized bags (P less than .001). Whole blood stored in glass bottles showed a similar improvement in in vivo survival when DEHP was added in weekly increments to mimic the accumulation of this plasticizer seen during storage in plastic containers. Survival of packed red cells stored in the presence of DEHP increased by 14% compared with storage in trimellitate-plasticized bags (P less than .05). In agreement with previous studies, hemolysis and microvesicle formation were also reduced in the presence of DEHP. These results suggest that proposed new storage systems lacking DEHP should be carefully evaluated to determine whether adequate post-transfusion survival of RBCs may be achieved.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 280-284 ◽  
Author(s):  
E Beutler ◽  
C West

Abstract The preservation of red cells “hard packed” to a hematocrit of over 80% from blood collected in citrate-phosphate-dextrose (CPD) or CPD-adenine (CPDA-1) has been investigated. After 21 days of storage, cells that had been collected in CPD solution had consumed most or all of the available glucose and manifested markedly impaired viability after reinfusion into the normal donor. In contrast, red cells prepared from blood collected in CPDA-1, a medium containing supplementary adenine and an increased amount of glucose, maintained higher glucose and adenosine triphosphate levels and, in most instances, manifested satisfactory posttransfusion viability. We emphasize that in addition to providing longer shelf life of stored blood, CPDA-1 provides a better hard-packed red cell concentrate for transfusion at 21 days.


Blood ◽  
1979 ◽  
Vol 54 (1) ◽  
pp. 280-284
Author(s):  
E Beutler ◽  
C West

The preservation of red cells “hard packed” to a hematocrit of over 80% from blood collected in citrate-phosphate-dextrose (CPD) or CPD-adenine (CPDA-1) has been investigated. After 21 days of storage, cells that had been collected in CPD solution had consumed most or all of the available glucose and manifested markedly impaired viability after reinfusion into the normal donor. In contrast, red cells prepared from blood collected in CPDA-1, a medium containing supplementary adenine and an increased amount of glucose, maintained higher glucose and adenosine triphosphate levels and, in most instances, manifested satisfactory posttransfusion viability. We emphasize that in addition to providing longer shelf life of stored blood, CPDA-1 provides a better hard-packed red cell concentrate for transfusion at 21 days.


2019 ◽  
Vol 49 (10) ◽  
Author(s):  
Marcondes Dias Tavares ◽  
Isabella de Oliveira Barros ◽  
Rejane dos Santos Sousa ◽  
Paulo Ricardo Firmino ◽  
Jucelio da Silva Gameleira ◽  
...  

ABSTRACT: The aim of this study was to evaluate the hematological, biochemical, and blood gas alterations of goat whole blood stored in different blood bags. Seven male, adult, crossbreed goats were used, weighing 62±1.8 kg. Nine hundred milliliters of whole blood from each animal was collected and stored in blood bags (450 ml in each), CPDA-1 (citrate phosphate dextrose-adenine) and CPD/SAG-M (citrate phosphate dextrose with saline-glucose-mannitol) as additive solutions, and kept refrigerated (2-4 ºC) for 42 days. Blood samples were collected from the plastic bags at baseline (T0) and after seven, 14, 21,28, 35, and 42 days for hematological, biochemical, blood gas, and microbiological evaluations. Free hemoglobin, degree of hemolysis, lactate, and pO2were increased in both bags, whereas hydrogen potential (pH) and the total hemoglobin concentration decreased overtime(P<0.05). The red blood cell count, glucose, sodium, and potassium remained stable, compared to the baseline. The CPD/SAG-M bag presented a lower red cell count, globular volume, total hemoglobin, and sodium, and a higher degree of hemolysis and plasma hemoglobin, compared with the CPDA-1 bag. The whole goat blood remained viable for therapeutic use; although, there were some important changes in the variables of the 42-day stored blood in relation to fresh blood (T0). We concluded that the CPDA-1 bag is more suitable for use in the storage of goat blood because of its lower commercial value.


Blood ◽  
1988 ◽  
Vol 71 (2) ◽  
pp. 448-452 ◽  
Author(s):  
JP AuBuchon ◽  
TN Estep ◽  
RJ Davey

Recent in vitro studies have shown that di-2-ethylhexyl-phthalate (DEHP) inhibits the deterioration of RBCs during refrigerated storage in containers that use this compound as a plasticizer. The experiments described in this report were designed to assess whether this in vitro protective effect of DEHP would result in a prolonged in vivo survival of RBCs infused into normal human recipients. Whole blood collected from ten normal donors was stored for 35 days in citrate-phosphate- dextrose-adenine (CPDA-1) anticoagulant contained in polyvinylchloride (PVC) bags plasticized with DEHP or a trimellitate compound that is known to have low leachability. Aliquots of RBCs from each container were then labeled with chromium-51 and were reinfused into the original donors. For blood stored in DEHP-plasticized PVC bags, 24% more red cells survived in vivo 24 hours after reinfusion than was observed when the blood had been stored in trimellitate-plasticized bags (P less than .001). Whole blood stored in glass bottles showed a similar improvement in in vivo survival when DEHP was added in weekly increments to mimic the accumulation of this plasticizer seen during storage in plastic containers. Survival of packed red cells stored in the presence of DEHP increased by 14% compared with storage in trimellitate-plasticized bags (P less than .05). In agreement with previous studies, hemolysis and microvesicle formation were also reduced in the presence of DEHP. These results suggest that proposed new storage systems lacking DEHP should be carefully evaluated to determine whether adequate post-transfusion survival of RBCs may be achieved.


Sign in / Sign up

Export Citation Format

Share Document