Numerical design characteristics of interior permanent magnet synchronous generator for offshore wind turbine

Author(s):  
Dongsu Lee ◽  
Cheol-Gyun Lee ◽  
Sang-Yong Jung ◽  
Yong-Jae Kim
2019 ◽  
Vol 63 (3) ◽  
pp. 151-158
Author(s):  
Lakhdar Mazouz ◽  
Sid Ahmed Zidi ◽  
Ahmed Hafaifa ◽  
Samir Hadjeri ◽  
Tahar Benaissa

This paper explores the optimization of wind turbine control system parameters. The wind turbine based on 5 MW PMSG Permanent magnet synchronous generator with two back-to-back converters which are connected to AC offshore network. For good functioning of the control system based on PI regulators, it is necessary to find a perfect way for calculating the gains of these regulators. In this paper, Hooke Jeeves method is presented as one of optimization solutions that can compute parameters of PI regulators. For this purpose, a model of offshore wind turbine is installed in PSCAD/EMTD in order to perform simulation study in which optimal PI regulators design can be found.


Inventions ◽  
2020 ◽  
Vol 6 (1) ◽  
pp. 3
Author(s):  
Wenping Cao ◽  
Ning Xing ◽  
Yan Wen ◽  
Xiangping Chen ◽  
Dong Wang

Wind energy conversion systems have become a key technology to harvest wind energy worldwide. In permanent magnet synchronous generator-based wind turbine systems, the rotor position is needed for variable speed control and it uses an encoder or a speed sensor. However, these sensors lead to some obstacles, such as additional weight and cost, increased noise, complexity and reliability issues. For these reasons, the development of new sensorless control methods has become critically important for wind turbine generators. This paper aims to develop a new sensorless and adaptive control method for a surface-mounted permanent magnet synchronous generator. The proposed method includes a new model reference adaptive system, which is used to estimate the rotor position and speed as an observer. Adaptive control is implemented in the pulse-width modulated current source converter. In the conventional model reference adaptive system, the proportional-integral controller is used in the adaptation mechanism. Moreover, the proportional-integral controller is generally tuned by the trial and error method, which is tedious and inaccurate. In contrast, the proposed method is based on model predictive control which eliminates the use of speed and position sensors and also improves the performance of model reference adaptive control systems. In this paper, the proposed predictive controller is modelled in MATLAB/SIMULINK and validated experimentally on a 6-kW wind turbine generator. Test results prove the effectiveness of the control strategy in terms of energy efficiency and dynamical adaptation to the wind turbine operational conditions. The experimental results also show that the control method has good dynamic response to parameter variations and external disturbances. Therefore, the developed technique will help increase the uptake of permanent magnet synchronous generators and model predictive control methods in the wind power industry.


Sign in / Sign up

Export Citation Format

Share Document