Linearised transceivers for mobile communications base stations using adaptive array antennas

Author(s):  
Hongxi Xue
2021 ◽  
Vol 2 (5) ◽  
pp. 5-11
Author(s):  
G. A. Tashpulatova ◽  
◽  
A. N. Krasavin

This article is about instrumental measurements of the FR EMR energy flux density. The measurement results were analyzed with the division of the data obtained by the purpose of buildings and the height of the antenna equipment placement, a hygienic assessment of the RF EMR levels created by the equipment of base stations of cellular communications, installed on the roofs of residential and public buildings and adjacent territories of Tashkent is given. A proposal is made on the rational placement of radio engineering facilities.Keywords:electromagnetic field; electromagnetic safety; base station for mobile communications; protection of public health; sanitary supervision


Author(s):  
Brock J. LaMeres ◽  
Raymond J. Weber ◽  
Yikun Huang ◽  
Monther Abusultan ◽  
Sam Harkness

Electronics ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 314 ◽  
Author(s):  
Cheng Wang ◽  
Yushi Cao ◽  
Zhili Zhang ◽  
Weidong Wang

The rapid development of mobile communications and the continuous growth of service needs lead to an increase in the number of base stations (BSs). Through virtualization and cloud technology, virtual Baseband Units (BBUs) are deployed on a virtual machine (VM) to build a BBU pool to achieve hardware resource sharing, which not only saves BS construction costs but also facilitates management and control. However, too high or too low server resource utilization in the pool not only affects the performance of the virtual BBU but also increases the maintenance cost of the physical equipment. In this paper, BBUs are virtualized to construct a virtual BBU pool based on the OpenStack cloud architecture and a dual threshold adaptive dynamic migration strategy is proposed in this scenario. Establish upper and lower threshold of resource utilization of the servers in the pool and the strategy determines whether the dynamic migration is triggered according to the resource utilization of each compute node. If the migration is triggered, the strategy selects the virtual resource to be moved out and the target node to realize the dynamic migration to achieve the purpose of balancing the server load and saving energy consumption. The migration strategy proposed in this paper is simulated on Cloudsim and the experimental results show that the strategy can effectively reduce the number of migrations and migration time on the basis of reducing energy consumption and SLA violations. This paper successfully deployed the strategy on the OpenStack platform, which implements dynamic migration autonomously to save the overall energy consumption of the BBU pool, instead of manual operations.


Sign in / Sign up

Export Citation Format

Share Document