scholarly journals A low-cost parallel computing platform for power engineering applications

Author(s):  
C.C. Fung
Author(s):  
Martin Gebert ◽  
Wolfgang Steger ◽  
Ralph Stelzer

Virtual Reality (VR) visualization of product data in engineering applications requires a largely manual process of translating various product data into a 3D representation. Modern game engines allow low-cost, high-end visualization using latest stereoscopic Head-Mounted Displays (HMDs) and input controllers. Thus, using them for VR tasks in the engineering industry is especially appealing. As standardized formats for 3D product representations do not currently meet the requirements that arise from engineering applications, the presented paper suggests an Enhanced Scene Graph (ESG) that carries arbitrary product data derived from various engineering tools. The ESG contains formal descriptions of geometric and non-geometric data that are functionally structured. A VR visualization may be derived from the formal description in the ESG immediately. The generic elements of the ESG offer flexibility in the choice of both engineering tools and renderers that create the virtual scene. Furthermore, the ESG allows storing user annotations, thereby sending feedback from the visualization directly to the engineers involved in the product development process. Individual user interfaces for VR controllers can be assigned and their controls mapped, guaranteeing intuitive scene interaction. The use of the ESG promises significant value to the visualization process as particular tasks are being automated and greatly simplified.


2014 ◽  
Vol 543-547 ◽  
pp. 3573-3576
Author(s):  
Yuan Jun Zou

Cloud computing, networking and other high-end computer data processing technology are the important contents of eleven-five development planning in China. They have developed rapidly in recent years in the field of engineering. In this paper, we combine parallel computing with the collaborative simulation principle, design a cloud computing platform, establish the mathematical model of cloud data processing and parallel computing algorithm, and verify the applicability of algorithm through the numerical simulation. Through numerical calculation, cloud computing platform can be divided into complex grids, and the transmission speed is fast, which is eight times than the finite difference method. The mesh is meticulous, which reaches millions. Convergence error is minimum, only 0.001. The calculation accuracy is up to 98.36%.


Author(s):  
Giovanni Cabiddu ◽  
Antonio Lioy ◽  
Gianluca Ramunno

Security controls (such as encryption endpoints, payment gateways, and firewalls) rely on correct program execution and secure storage of critical data (such as cryptographic keys and configuration files). Even when hardware security elements are used (e.g. cryptographic accelerators) software is still—in the form of drivers and libraries—critical for secure operations. This chapter introduces the features and foundations of Trusted Computing, an architecture that exploits the low-cost TPM chip to measure the integrity of a computing platform. This allows the detection of static unauthorized manipulation of binaries (be them OS components or applications) and configuration files, hence quickly detecting software attacks. For this purpose, Trusted Computing provides enhanced security controls, such as sealed keys (that can be accessed only by good applications when the system is in a safe state) and remote attestation (securely demonstrating the software state of a platform to a remote network verifier). Besides the theoretical foundation, the chapter also guides the reader towards creation of applications that enhance their security by using the features provided by the underlying PC-class trusted platform.


SPIE Newsroom ◽  
2011 ◽  
Author(s):  
Yi Guo ◽  
Antonio Ruis ◽  
Serni Ribò ◽  
Carles Ferrer

2015 ◽  
Vol 4 (2) ◽  
pp. 48-57
Author(s):  
Naci Yastikli ◽  
Zehra Erisir ◽  
Pelin Altintas ◽  
Tugba Cak

The reverse engineering applications has gained great momentum in industrial production with developments in the fields of computer vision and computer-aided design (CAD). The reproduction of an existing product or a spare part, reproduction of an existing surface, elimination of the defect or improvement of the available product are the goals of industrial reverse engineering applications. The first and the most important step in reverse engineering applications is the generation of the three dimensional (3D) metric model of an existing product in computer environment. After this stage, many operations such as the preparation of molds for mass production, the performance testing, the comparison of the existing product with other products and prototypes which are available on the market are performed by using the generated 3D models. In reverse engineering applications, the laser scanner system or digital terrestrial photogrammetry methods, also called contactless method, are preferred for the generation of the 3D models. In particular, terrestrial photogrammetry has become a popular method since require only photographs for the 3-dimensional drawing, the generation of the dense point cloud using the image matching algorithms and the orthoimage generation as well as its low cost. In this paper, an industrial application of 3D information modelling is presented which concerns the measurement and 3D metric modelling of the ship model. The possible usage of terrestrial photogrammetry in reverse engineering application is investigated based on low cost photogrammetric system. The main aim was the generation of the dense point cloud and 3D line drawing of the ship model by using terrestrial photogrammetry, for the production of the ship in real size as a reverse engineering application. For this purpose, the images were recorded with digital SLR camera and orientations have been performed. Then 3D line drawing operations, point cloud and orthoimage generations have been accomplished by using PhotoModeler software. As a result of the proposed terrestrial photogrammetric steps, 0.5 mm spaced dense point cloud and orthoimage have been generated. The obtained results from experimental study were discussed and possible use of proposed methods was evaluated for reverse engineering application.


2014 ◽  
Vol 71 (1) ◽  
pp. 217-240 ◽  
Author(s):  
Kuo -Chan Huang ◽  
Ying -Lin Tsai ◽  
Hsiao -Ching Liu

2012 ◽  
Vol 433-440 ◽  
pp. 2892-2898
Author(s):  
Guang Lei Fei ◽  
Jian Guo Ning ◽  
Tian Bao Ma

Parallel computing has been applied in many fields, and the parallel computing platform system, PC cluster based on MPI (Message Passing Interface) library under Linux operating system is a cost-effectiveness approach to parallel compute. In this paper, the key algorithm of parallel program of explosion and impact is presented. The techniques of solving data dependence and realizing communication between subdomain are proposed. From the test of program, the portability of MMIC-3D parallel program is satisfied, and compared with the single computer, PC cluster can improve the calculation speed and enlarge the scale greatly.


2015 ◽  
Vol 29 (6) ◽  
pp. 05014011
Author(s):  
Shane Hayden ◽  
Daniel P. Ames ◽  
Derrick Turner ◽  
Thomas Keene ◽  
David Andrus

Sign in / Sign up

Export Citation Format

Share Document