Mobile, Low-Cost, and Large-Scale Immersive Data Visualization Environment for Civil Engineering Applications

2015 ◽  
Vol 29 (6) ◽  
pp. 05014011
Author(s):  
Shane Hayden ◽  
Daniel P. Ames ◽  
Derrick Turner ◽  
Thomas Keene ◽  
David Andrus
2008 ◽  
Author(s):  
Hyung-Jo Jung ◽  
Dong-Doo Jang ◽  
Heon-Jae Lee ◽  
Sang-Won Cho

2020 ◽  
Vol 7 (10) ◽  
pp. 2479-2486
Author(s):  
Carlos A. Navarro ◽  
Cassondra R. Giffin ◽  
Boyang Zhang ◽  
Zehan Yu ◽  
Steven R. Nutt ◽  
...  

Composite materials, especially carbon fiber-reinforced polymers, are a class of structural materials now commonly used in aircraft, marine, and other applications, with emerging large-scale use in the automotive and civil engineering applications.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1689 ◽  
Author(s):  
Richard Scott ◽  
Miodrag Vidakovic ◽  
Sanjay Chikermane ◽  
Brett McKinley ◽  
Tong Sun ◽  
...  

Fiber optic sensors have considerable potential for measuring strains in the challenging environment posed by today’s civil engineering applications. Their long-term reliability and stability are particularly important attributes for assessing, with confidence, effects such as cracking and response to normal (and abnormal) loads. However, given the fragile nature of the bare fiber, the sensors must be packaged to achieve adequate robustness but the resulting increased cost of installation can frequently limit the number of sensors which can be installed or their use may have to be ruled out altogether due to these financial constraints. There is thus potential for the development of a more affordable type of packaging and this paper describes work undertaken to produce a cost-effective and easy-to-use technique for encapsulating fiber optic sensors in resin, taking advantage of 3D printing techniques which are widely available and at low cost. This approach can be used to produce a robust, inexpensive packaged sensor system which is seen as being suitable to be extended to a wider range of uses including installation in concrete structures prior to casting. To evaluate this approach, several such 3D printed package types and geometries are described and their behavior is assessed from a programme of laboratory trials, the results of which are presented in this paper. This proof-of-concept testing has demonstrated the considerable potential which 3D printed packages have and the scope for further development and consequent use in civil engineering applications. Areas showing promise and potential, which have been identified from the work undertaken, are discussed.


Author(s):  
Jesús Alberto Verduzco Ramírez ◽  
Nicandro Farías Mendoza ◽  
Gilberto René Martínez Bonilla ◽  
Pedro Rocha Medrano ◽  
María Isabel Sáenz Rodríguez

La necesidad de disponer de superficies de visualización gráfica de datos de mayor tamaño y resolución que aquellas proporcionadas por el monitor se hace evidente al utilizar aplicaciones que generan cantidades significativas de datos gráficos como: la visualización científica, los entornos de la realidad virtual y aumentada, el diseño en ingeniería, el análisis de gráficas en finanzas, etcétera.


Author(s):  
Madelaine Freeman ◽  
Mohammad Mehdi Kashani ◽  
P. J. Vardanega

Aerial robotic technology has potential for use in a wide variety of civil engineering applications. Such technology potentially offers low-cost methods to replace expensive structural health monitoring activities such as visual inspection. Aerial robots also have potential uses in civil construction and for regional surveys. This paper presents the results of a review on the applications of aerial robotic technology in civil engineering. Such civil engineering applications can be classified into three broad areas: (i) monitoring and inspection of civil infrastructure; (ii) site management, robotic construction, and maintenance and (iii) post-disaster response surveys and rapid damage assessments. The motivations for uptake of aerial robotics in the civil engineering industry generally fall into the following categories: (i) cost savings, (ii) improved measurement capability and (iii) safety improvements. The categories of aerial robotic use in civil engineering are then classified as either ‘established’ or ‘emerging’ uses.


Author(s):  
Sanderson L. Gonzaga de Oliveira ◽  
Libério Silva

This paper studies heuristics for the bandwidth reduction of large-scale matrices in serial computations. Bandwidth optimization is a demanding subject for a large number of scientific and engineering applications. A heuristic for bandwidth reduction labels the rows and columns of a given sparse matrix. The algorithm arranges entries with a nonzero coefficient as close to the main diagonal as possible. This paper modifies an ant colony hyper-heuristic approach to generate expert-level heuristics for bandwidth reduction combined with a Hill-Climbing strategy when applied to matrices arising from specific application areas. Specifically, this paper uses low-cost state-of-the-art heuristics for bandwidth reduction in tandem with a Hill-Climbing procedure. The results yielded on a wide-ranging set of standard benchmark matrices showed that the proposed strategy outperformed low-cost state-of-the-art heuristics for bandwidth reduction when applied to matrices with symmetric sparsity patterns.


1987 ◽  
Vol 19 (5-6) ◽  
pp. 701-710 ◽  
Author(s):  
B. L. Reidy ◽  
G. W. Samson

A low-cost wastewater disposal system was commissioned in 1959 to treat domestic and industrial wastewaters generated in the Latrobe River valley in the province of Gippsland, within the State of Victoria, Australia (Figure 1). The Latrobe Valley is the centre for large-scale generation of electricity and for the production of pulp and paper. In addition other industries have utilized the brown coal resource of the region e.g. gasification process and char production. Consequently, industrial wastewaters have been dominant in the disposal system for the past twenty-five years. The mixed industrial-domestic wastewaters were to be transported some eighty kilometres to be treated and disposed of by irrigation to land. Several important lessons have been learnt during twenty-five years of operating this system. Firstly the composition of the mixed waste stream has varied significantly with the passage of time and the development of the industrial base in the Valley, so that what was appropriate treatment in 1959 is not necessarily acceptable in 1985. Secondly the magnitude of adverse environmental impacts engendered by this low-cost disposal procedure was not imagined when the proposal was implemented. As a consequence, clean-up procedures which could remedy the adverse effects of twenty-five years of impact are likely to be costly. The question then may be asked - when the total costs including rehabilitation are considered, is there really a low-cost solution for environmentally safe disposal of complex wastewater streams?


Sign in / Sign up

Export Citation Format

Share Document