Additional applications of demand side management techniques in power systems integrated with distributed generation

Author(s):  
Y.S. Lim ◽  
S. White ◽  
G. Nicholson ◽  
P. Taylor
Author(s):  
Muthuselvi Gomathinayagam ◽  
Saravanan Balasubramanian

The current lifestyle of humanity relies heavily on energy consumption, thus rendering it an inevitable need. An ever-increasing demand for energy has resulted from the increasing population. Most of this demand is met by the traditional sources that continuously deplete and raise significant environmental issues. The existing power structure of developing nations is aging, unstable, and unfeasible, further prolonging the problem. The existing electricity grid is unstable, vulnerable to blackouts and disruption, has high transmission losses, low quality of power, insufficient electricity supply, and discourages distributed energy sources from being incorporated. Mitigating these problems requires a complete redesign of the system of power distribution. The modernization of the electric grid, i.e., the smart grid, is an emerging combination of different technologies designed to bring about the electrical power grid that is changing dramatically. Demand side management (DSM) allow customers to be more involved in contributors to the power systems to achieve system goals by scheduling their shiftable load. Effective DSM systems require the participation of customers in the system that can be done in a fair system. This paper focuses primarily on techniques of DSM and demand responses (DR), including scheduling approaches and strategies for optimal savings.


2014 ◽  
Vol 69 (5) ◽  
Author(s):  
Husna Syadli ◽  
Md Pauzi Abdullah ◽  
Muhammad Yusri Hassan ◽  
Faridah Hussin

When the high electricity demand growth is not matched by growth in generating sufficient capacity, deficit cannot be avoided. In Sumatera, power outages of up to 6 hours per day are part of the power crisis experienced. To date, deficits experienced by Sumatera require better management strategy and operation of electric power systems, taking into account the security system, reliability and customer service. This paper briefly discusses the impact of rolling blackouts on the community's economy and proposed demand-side management strategies as short term measure to overcome the power supply deficit in Sumatera. From the analysis, electricity savings in household equipment can save energy consumption by 98.79 MW at peak load and 97.55 MW for off peak load time. 


Energies ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 143 ◽  
Author(s):  
Gerardo J. Osório ◽  
Miadreza Shafie-khah ◽  
Mohamed Lotfi ◽  
Bernardo J. M. Ferreira-Silva ◽  
João P. S. Catalão

The integration of renewable energy resources (RES) (such as wind and photovoltaic (PV)) on large or small scales, in addition to small generation units, and individual producers, has led to a large variation in energy production, adding uncertainty to power systems (PS) due to the inherent stochasticity of natural resources. The implementation of demand-side management (DSM) in distribution grids (DGs), enabled by intelligent electrical devices and advanced communication infrastructures, ensures safer and more economical operation, giving more flexibility to the intelligent smart grid (SG), and consequently reducing pollutant emissions. Consumers play an active and key role in modern SG as small producers, using RES or through participation in demand response (DR) programs. In this work, the proposed DSM model follows a two-stage stochastic approach to deal with uncertainties associated with RES (wind and PV) together with demand response aggregators (DRA). Three types of DR strategies offered to consumers are compared. Nine test cases are modeled, simulated, and compared in order to analyze the effects of the different DR strategies. The purpose of this work is to minimize DG operating costs from the Distribution System Operator (DSO) point-of-view, through the analysis of different levels of DRA presence, DR strategies, and price variations.


Sign in / Sign up

Export Citation Format

Share Document