angular stability
Recently Published Documents


TOTAL DOCUMENTS

137
(FIVE YEARS 60)

H-INDEX

10
(FIVE YEARS 4)

Author(s):  
Srimita Coomar ◽  
Santanu Mondal ◽  
Rajarshi Sanyal

Abstract This article presents a novel miniaturized (0.105λ0 × 0.105λ0) flexible complementary frequency selective surfaces (CFSS) structure with sharp band edge selectivity and very high angular stability. To explore two diverse applications as a passband and stopband filter, a novel complementary convoluted square loop (CCSL) type structure has been designed and investigated on ultrathin dielectric material of thickness 0.0023λ0. The second-order wide controllable passband with fractional bandwidth of 19.23% (−3 dB) and remarkably wide stopband of 64.7% (−10 dB) and 54.8% (−20 dB) respectively have been achieved by using a cascaded resonating structure which is composed of asymmetrical meandered CCSL array, arranged on two ultrathin dielectric layers with air foam separation. This particular format would lead to sharp band edge selectivity with steep roll-off (72.43 dB/GHz) and an excellent passband selectivity factor (0.731). An equivalent lumped LC circuit in conjunction with the transmission line model has also been adopted to comprehend the physical mechanism of the proposed single layer and double layer structures. Further, better passband and stopband angular stability at an oblique incident angle of 45° and the bending characteristics have also been investigated thoroughly for the proposed flexible CFSS to check their employability in different conformal structures with WiMAX passband and WLAN stopband application.


2021 ◽  
Vol 6 (4) ◽  
pp. 99
Author(s):  
Fabrizio Quattrini ◽  
Corrado Ciatti ◽  
Serena Gattoni ◽  
Calogero Puma Pagliarello ◽  
Francesco Ceccarelli ◽  
...  

Background: Clear recommendations about the optimal treatment of traumatic tarsal navicular fractures are still very debated in the literature, and this is due to several factors: navicular fractures are rare and often misdiagnosed injuries, they are frequently associated with other fractures or a dislocation of the midfoot, and the current knowledge is based on few papers mainly considering a limited number of cases and dealing with different therapeutic approaches. The treatment of navicular body fractures is controversial and burdened by a high incidence of complications; in particular, Sangeorzan type III comminuted fractures represent a real challenge for the orthopedic surgeon. An accurate preoperative planning, a scrupulous surgical technique aimed at restoring volume and bony anatomy, and the use of low-profile angular-stability plates can lead to optimal clinical and functional results, decreasing the chances of arthritic evolution of mid-foot joints.


Author(s):  
XiaoHui Yu ◽  
XiaoXiang He ◽  
Yang Yang ◽  
BoYu Hua ◽  
FuKang Li ◽  
...  

2021 ◽  
Author(s):  
Jose Filipe de Lima ◽  
Humberto Dionisio de Andrade ◽  
Glauco Fontgalland ◽  
Antonio Sergio Bezerra Sombra ◽  
Karoline Rodrigues Lima ◽  
...  

Author(s):  
Orlando Delgado Fernandez ◽  
Azwirman Gusrialdi ◽  
Antonio A. Martinez Garcia ◽  
Miriam Vilaragut Llanes ◽  
Orlys E. Torres Breffe

Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Zain Ul Abidin ◽  
Qunsheng Cao ◽  
Gulab Shah ◽  
Zaheer Ahmed Dayo ◽  
Muhammad Ejaz

Abstract In this paper, a miniaturized bandstop frequency selective surface (FSS) with high angular stability is presented. Each FSS element consists of four sets each consisting eight octagonal concentric interconnected loops. The four sets are connected with each other through outermost octagonal loop. The unit size is miniaturized to 0.066 λ0 at the resonant frequency of 1.79 GHz. The proposed configuration achieves excellent angular stability (only 0.025 GHz resonant frequency deviation is observed upto 83° oblique angles). The working mechanism of FSS is explained with the help of equivalent circuit model (ECM), electric field distribution, and corresponding surface current distribution. A prototype of the designed bandstop FSS is fabricated to verify the simulated frequency response. The experimental results are consistent with the simulation results. Simple geometry, low profile, high angular stability, and compact cell size are prominent features of the proposed structure.


2021 ◽  
Vol 36 (6) ◽  
pp. 664-669
Author(s):  
Zhengyong Yu ◽  
Baozhu Li ◽  
Shenggao Ding ◽  
Wanchun Tang

A compact dual-passband three-dimensional (3D) frequency selective surface (FSS) is proposed based on multiple square coaxial waveguides (SCWs), which exhibits good angular stability and both-side fast roll-off characteristics. The unit cell of the proposed 3D FSS is composed of one parallel plate waveguide (PPW) propagation path and two SCW propagation paths. By etching a centered annular slot, each SCW path forms two identical short SCWs. Each short SCW inherently generates one square slot resonance. In each SCW path, on the account of electromagnetic coupling between two square slot resonators provided by two short SCWs, the square slot resonant mode will split into even-/odd-resonant modes. Accordingly, each SCW path can provide a flat second-order passband with two transmission poles. Due to the reflection and out of phase of electromagnetic waves, four transmission zeros located at both sides of the passbands are introduced for high frequency selectivity, realizing both-side fast roll-off performances. In order to explain the operating principle, the electric-field distributions at transmission-zero/pole frequencies are investigated. Finally, an FSS prototype is fabricated and measured, and the results exhibit good angular stability for both TE and TM polarizations under incident angles from 0° to 60°. In addition, the proposed 3D FSS has a compact unit cell.


Sign in / Sign up

Export Citation Format

Share Document