The research of the anti-surge control system based on CAN bus for centrifugal compressor

Author(s):  
Zhang Yongjun ◽  
Wang Zhixing
Author(s):  
Nurlan Batayev ◽  
Batyrbek Suleimenov ◽  
Sagira Batayeva

<span>From the middle of XX century, natural gas is an important mineral, widely used in the energy sector. Transportation of natural gas is carried out via gas pipeline networks and compression stations. One of the key features which need to be implemented for any centrifugal gas compressor is a surge protection. This article describes the method and develops software application intended for simulation and study of surge protection system of a centrifugal compressor used in modern gas compression stations. Within the article research method, modelling environment’s block diagram, proposed algorithms and results are described. For surge cases control and prediction, Anti-surge control block implemented which based on practical experience and centrifugal compressor theory. To avoid complicated energy balancing differential equations the volumetric flow calculation algorithm proposed which is used in combination with Redlich-Kwong equation of state. Developed software’s adequacy test performed through modeling of one-stage gas compression scheme at rated speed with comparison of parameters with reference commercial software and verification of the anti-surge control system.</span>


Author(s):  
Blair J. Martin ◽  
James P. Patrick

A surge control system for a natural gas centrifugal compressor station has been modified in order to reduce shutdowns caused by high discharge temperature and provide a more robust and stable operation. The process consists of a compressor driven by a 14 MW gas turbine and recycle piping, a 16” recycle valve, a PLC based surge control algorithm, a flow measurement element, and a compressor differential pressure transmitter. The control objective is to manipulate the recycle valve to maintain flow through the compressor to a setpoint determined from the differential pressure across the compressor. Field tests were conducted to measure the open loop process dynamics of the valve, piping, compressor and transmitters. From the test data, the relevant process dynamics were determined enabling the development of a first order plus dead time model of the system. The process dynamics are complex due to the gas dynamic effects of the station piping and tend to exhibit inverse and time delayed behavior. Large variations in process gain also create problems with obtaining a consistent flow response under different operating conditions. A stability analysis was completed and the control system was redesigned with several enhancements including derivative control, flow signal filtering, process linearization, and improved controller programming techniques. The results of the modifications are the compressor does not shut down when subjected to transients from other units, the compressor can be started against high head conditions, and the closed loop response time is ten times faster than the previous system. The new system has been in operation since May 1997.


2012 ◽  
Vol 26 (1) ◽  
pp. 31-36
Author(s):  
Andong Yin ◽  
Yunxiao Zhu ◽  
Hao Jiang ◽  
Han Zhao

2014 ◽  
Vol 1006-1007 ◽  
pp. 627-630 ◽  
Author(s):  
Xu Dong Yang

CAN bus was used as the data transferring channels in the two–level controllers, and the real-time,dexterity,expansibility and security for the Gluing control system based on CAN bus can be improved obviously.The system structure, principle and software design were introduced.The experiment shows that it is a reliable control system and it can meet the requirements of automatic gluing tasks.


Sign in / Sign up

Export Citation Format

Share Document