scholarly journals A novel robust fixed‐time fault‐tolerant tracking control of uncertain robot manipulators

Author(s):  
Linzhi Liu ◽  
Liyin Zhang ◽  
Youming Wang ◽  
Yinlong Hou
Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Huihui Pan ◽  
Guangming Zhang

This paper studies the fixed-time trajectory tracking control problem of robot manipulators in the presence of uncertain dynamics and external disturbances. First, a novel nonsingular fixed-time sliding mode surface is presented, which can ensure that the convergence time of the suggested surface is bounded regardless of the initial states. Subsequently, a novel fast nonsingular fixed-time sliding mode control (NFNFSMC) is developed so that the closed-loop system is fixed-time convergent to the equilibrium. By applying the proposed NFNFSMC method and the adaptive technique, a novel adaptive nonsingular fixed-time control scheme is proposed, which can guarantee fast fixed-time convergence of the tracking errors to small regions around the origin. With the proposed control method, the lumped disturbance is compensated by the adaptive technique, whose prior information about the upper bound is not needed. The fixed-time stability of the trajectory tracking control under the proposed controller is proved by the Lyapunov stability theory. Finally, corresponding simulations are given to illustrate the validity and superiority of the proposed control approach.


2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Mien Van ◽  
Pasquale Franciosa ◽  
Dariusz Ceglarek

A robust fault diagnosis and fault-tolerant control (FTC) system for uncertain robot manipulators without joint velocity measurement is presented. The actuator faults and robot manipulator component faults are considered. The proposed scheme is designed via an active fault-tolerant control strategy by combining a fault diagnosis scheme based on a super-twisting third-order sliding mode (STW-TOSM) observer with a robust super-twisting second-order sliding mode (STW-SOSM) controller. Compared to the existing FTC methods, the proposed FTC method can accommodate not only faults but also uncertainties, and it does not require a velocity measurement. In addition, because the proposed scheme is designed based on the high-order sliding mode (HOSM) observer/controller strategy, it exhibits fast convergence, high accuracy, and less chattering. Finally, computer simulation results for a PUMA560 robot are obtained to verify the effectiveness of the proposed strategy.


IEEE Access ◽  
2019 ◽  
Vol 7 ◽  
pp. 149750-149763 ◽  
Author(s):  
Liyin Zhang ◽  
Youming Wang ◽  
Yinlong Hou ◽  
Hong Li

Sign in / Sign up

Export Citation Format

Share Document