Erratum: Fast inverse Laplace transformation of functions containing one multiple pole

1969 ◽  
Vol 5 (25) ◽  
pp. 670
Author(s):  
F.L. N-Nagy ◽  
M.N. Al-Tikriti
2018 ◽  
Vol 25 (3) ◽  
pp. 593-611
Author(s):  
Xiayang Zhang ◽  
Haoquan Liang ◽  
Meijuan Zhao

This paper, taking the clamped boundary condition as an example, develops Su and Ma's fundamental solutions of the dynamic responses of a Timoshenko beam subjected to impact load. Based on that, a further extension regarding the general moving load case is also established. Kelvin–Voigt damping, whether proportionally or nonproportionally damped, is incorporated into the model, making it more comprehensive than the model of Su and Ma. Numerical inverse Laplace transformation is introduced to obtain the time-domain solution, where Durbin's formula and the corresponding convergence criteria are utilized in numerical experiments. Further, the real modal superposition method is applied at an analytical level to validate the numerical results by applying a proportionally damped condition. Total comparisons are made between the methods by sufficient case studies. The dynamic responses with and without damping effect are computed with wider slenderness to verify the correctness and effectiveness of the numerical results. Furthermore, parametric studies regarding the damping coefficients are performed to explore the nonproportional damping effect. The results show that the structural damping has significant influences on the dynamic behaviors and is especially stronger at small slender ratios. As the damping decreases the inherent frequencies and excites the low-frequency modal components more actively, a resonant phenomenon appears in high slenderness case when the beam experiences a low-speed moving load. Additionally, the computations in the moving load case indicate that the algorithm convergence is preferable when the number of grids exceeds 1000.


1967 ◽  
Vol 89 (2) ◽  
pp. 269-272 ◽  
Author(s):  
C. F. Chen ◽  
R. E. Yates

A new matrix formula for the inverse Laplace transformation is established. After substituting the eigenvalues and coefficients and performing some simple matrix operations, one can obtain the inverse Laplace transformation of the function in question. The regular Heaviside techniques involving partial fraction expansions, function differentiations, and so on, are avoided. Since the formula is general, it is particularly advantageous for use on high-order transfer functions; since the formula is exact, the results have no numerical errors. Hundreds of commonly used transform pairs can be replaced by this single matrix formula.


2020 ◽  
Vol 137 ◽  
pp. 102067 ◽  
Author(s):  
Gábor Horváth ◽  
Illés Horváth ◽  
Salah Al-Deen Almousa ◽  
Miklós Telek

Sign in / Sign up

Export Citation Format

Share Document