E-mode cutoff wave number of circular waveguide loaded with dielectric sector

1991 ◽  
Vol 27 (12) ◽  
pp. 1071
Author(s):  
T.S. Yeo
1995 ◽  
Vol 2 (10) ◽  
pp. 3844-3851 ◽  
Author(s):  
R. Betti ◽  
V. N. Goncharov ◽  
R. L. McCrory ◽  
C. P. Verdon

1976 ◽  
Vol 43 (4) ◽  
pp. 584-588 ◽  
Author(s):  
A. H. Nayfeh

The method of multiple scales is used to derive two partial differential equations which describe the evolution of two-dimensional wave-packets on the interface of two semi-infinite, incompressible, inviscid fluids of arbitrary densities, taking into account the effect of the surface tension. These differential equations can be combined to yield two alternate nonlinear Schro¨dinger equations; one of them contains only first derivatives in time while the second contains first and second derivatives in time. The first equation is used to show that the stability of uniform wavetrains depends on the wave length, the surface tension, and the density ratio. The results show that gravity waves are unstable for all density ratios except unity, while capillary waves are stable unless the density ratio is below approximately 0.1716. Moreover, the presence of surface tension results in the stabilization of some waves which are otherwise unstable. Although the first equation is valid for a wide range of wave numbers, it is invalid near the cutoff wave number separating stable from unstable motions. It is shown that the second Schro¨dinger equation is valid near the cutoff wave number and thus it can be used to determine the dependence of the cutoff wave number on the amplitude, thereby avoiding the usual process of determining a new expansion that is only valid near the cutoff conditions.


2020 ◽  
Vol 640 ◽  
pp. A53
Author(s):  
L. Löhnert ◽  
S. Krätschmer ◽  
A. G. Peeters

Here, we address the turbulent dynamics of the gravitational instability in accretion disks, retaining both radiative cooling and irradiation. Due to radiative cooling, the disk is unstable for all values of the Toomre parameter, and an accurate estimate of the maximum growth rate is derived analytically. A detailed study of the turbulent spectra shows a rapid decay with an azimuthal wave number stronger than ky−3, whereas the spectrum is more broad in the radial direction and shows a scaling in the range kx−3 to kx−2. The radial component of the radial velocity profile consists of a superposition of shocks of different heights, and is similar to that found in Burgers’ turbulence. Assuming saturation occurs through nonlinear wave steepening leading to shock formation, we developed a mixing-length model in which the typical length scale is related to the average radial distance between shocks. Furthermore, since the numerical simulations show that linear drive is necessary in order to sustain turbulence, we used the growth rate of the most unstable mode to estimate the typical timescale. The mixing-length model that was obtained agrees well with numerical simulations. The model gives an analytic expression for the turbulent viscosity as a function of the Toomre parameter and cooling time. It predicts that relevant values of α = 10−3 can be obtained in disks that have a Toomre parameter as high as Q ≈ 10.


2010 ◽  
Vol 1 (2) ◽  
pp. 149-155
Author(s):  
Dmitry M. Vavriv ◽  
S. S. Sekretaryov
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document