scholarly journals A Study on an Out-of-Step Detection Algorithm Using the Time Variation of Complex Power: Part I, Mathematical Modeling

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4065
Author(s):  
You-Jin Lee ◽  
Jeong-Yong Heo ◽  
O-Sang Kwon ◽  
Chul-Hwan Kim

Power quality and stability have become the most important issues in power system operations, Micro Grids, and Smart Grids. Sensitive equipment can be seriously damaged when exposed to unstable power swing conditions. An unstable system may cause serious damage to Micro Grid System elements such as generators, transformers, transmission lines, and so forth. Therefore, out-of-step detection is essential for the safe operation of a Micro Grid system. In general, Equal Area Criterion (EAC) is a method for evaluating the stability of Smart Grid systems. However, EAC can be performed only if it is possible to analyze the active power and generator angle. This paper presents an analysis of the trajectory of complex power using a mathematical model. The variation of complex power is analyzed using a mathematical method, and then the relationship between complex power and EAC is presented, and a simulation performed. Later, in part II, a novel out-of-step detection algorithm based on part I will be presented and tested.

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1833 ◽  
Author(s):  
You-Jin Lee ◽  
O-Sang Kwon ◽  
Jeong-Yong Heo ◽  
Chul-Hwan Kim

One of the established unstable power swing (out-of-step) detection algorithms in micro grid/smart grid power systems uses a trajectory of apparent impedance in the R-X plane. However, this algorithm is not suitable for fast out-of-step conditions and it is hard to detect out-of-step conditions exactly. Another algorithm for out-of-step detection is using phasor measurement units (PMUs). However, PMUs need extra equipment. This paper presents the out-of-step detection algorithm using the trajectory of complex power. The trajectory of complex power and generator mechanical power is used to identify out-of-step conditions. A second order low pass digital filter is used to extract the generator mechanical power from the complex power. Variations of complex power are used to identify equilibrium points between stable and unstable conditions. The proposed out-of-step algorithm is based on the modification of assessment of a transient stability using equal area criterion (EAC). The proposed out-of-step algorithm is verified and tested by using alternative transient program/electromagnetic transient program (ATP/EMTP) MODELS.


2021 ◽  
Vol 300 ◽  
pp. 01011
Author(s):  
Jun Wu ◽  
Sheng Cheng ◽  
Shangzhi Pan ◽  
Wei Xin ◽  
Liangjun Bai ◽  
...  

Defects such as insulator, pins, and counterweight in highvoltage transmission lines affect the stability of the power system. The small targets such as pins in the unmanned aerial vehicle (UAV) inspection images of transmission lines occupy a small proportion in the images and the characteristic representations are poor which results a low defect detection rate and a high false positive rate. This paper proposed a transmission line pin defect detection algorithm based on improved Faster R-CNN. First, the pre-training weights with higher matching degree are obtained based on transfer learning. And it is applied to construct defect detection model. Then, the regional proposal network is used to extract features in the model. The results of defect detection are obtained by regression calculation and classification of regional characteristics. The experimental results show that the accuracy of the pin defect detection of the transmission line reaches 81.25%


Author(s):  
Mohamadou Nassourou ◽  
Joaquim Blesa ◽  
Vicenç Puig

The problem of energy dispatch in heterogeneous complex systems such as smart grids cannot be efficiently addressed using classical control or ad hoc methods. This article discusses the application of economic model predictive control to the management of a smart micro-grid system connected to an electrical power grid. The considered system is composed of several subsystems, namely, some photovoltaic panels, a wind generator, a hydroelectric generator, a diesel generator, and some storage devices (batteries). The batteries are charged with the energy from the photovoltaic panels, wind and hydroelectric generators, and they are discharged whenever the generators produce less energy than needed. The subsystems are interconnected via a DC Bus, from which load demands are satisfied. Modeling smart grids components is based on the generalized flow-based networked systems paradigm, and assuming energy generators to be stable, load demands and energy prices are known. This study shows that economic model predictive control is economically superior to a two-layer hierarchical model predictive control.


2014 ◽  
Vol 945-949 ◽  
pp. 2841-2845
Author(s):  
Yu Jie Liu ◽  
Wei Hua Li ◽  
Xiang Hua Luo ◽  
Cheng Su ◽  
Shi Xue Ding ◽  
...  

With the development of the power system, wind energy was applied to micro-grid system as a distributed generation. The output of the wind farms has the characteristic of intermittence and fluctuation, which would influent the stability of micro-grid system and can be solved effectively by compressed air energy storage system, a new energy storage technology. Because of the advantage of fast response, high economic performance and small environmental impacts, it has an extensive application prospect. This paper builds a micro-grid system with wind power generator, and control the output of micro-grid system by using compressed air energy storage system. The simulation result verifies that the compressed-air energy storage system can effectively suppress power fluctuation and improving the stability of the micro-grid system.


Author(s):  
Zhetao Chen ◽  
Zhimin Xi

This paper proposes reliability-based optimal design of a micro-grid system under service disruptions due to natural disasters. The objective is to determine the minimum number of generators and their distributions in the micro-grid so that the system’s recoverability (or resilience) and operation efficiency can be guaranteed under random failure scenarios of the power transmission lines. Power flow analysis combing with the Monte Carlo simulation (MCS) are used for uncertainty propagation analysis to quantify the system’s recoverability distribution and the transmission efficiency distribution under random failure scenarios of the transmission lines. The optimal allocation of the generators is much more reliable compared to the deterministic solutions without considering various uncertainties in the system. The proposed work is demonstrated through a 12-bus power system.


Author(s):  
Arvind Sharma ◽  
Mohan Kolhe ◽  
Stein Oluf Kristiansen ◽  
Stig Simonsen ◽  
Henrik Landsverk ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document