One‐cycle decoupling control method of multi‐leg switching power amplifier for magnetic bearing system

2019 ◽  
Vol 13 (8) ◽  
pp. 1204-1211
Author(s):  
Chengzi Liu ◽  
Zhiquan Deng ◽  
Kexiang Li ◽  
Jie Zhou
Proceedings ◽  
2020 ◽  
Vol 64 (1) ◽  
pp. 25
Author(s):  
Yefa Hu ◽  
Kezhen Yang ◽  
Xinhua Guo ◽  
Jian Zhou ◽  
Huachun Wu

A switching power amplifier is a key component of the actuator of an active magnetic bearing, and its reliability has an important impact on the performance of a magnetic bearing system. This paper analyzes the topologies of a switching power amplifier of an active magnetic bearing. In the case of different coil pair arrangements and bias current distributions, comprehensive evaluation of the different topologies of switching power amplifiers is introduced. This evaluation has a guiding role in the design of a switching power amplifier of an active magnetic bearing.


1996 ◽  
Vol 118 (4) ◽  
pp. 721-726 ◽  
Author(s):  
Cheol-Soon Kim ◽  
Chong-Won Lee

As a new rotor control scheme, isotropic control of weakly anisotropic rotor bearing system in complex state space is proposed, which utilizes the concepts on the eigenstructure of the isotropic rotor system. Advantages of the scheme are that the controlled system always retains isotropic eigenstructure, leading to circular whirling due to unbalance and that it is efficient for control of unbalance response. And the system analysis and controller design becomes simple and yet comprehensive since the order of the matrices treated in the complex domain approach is half of that in the real approach. The control scheme is applied to a rigid rotor-active magnetic bearing system which is digitally controlled and the control performance is investigated experimentally in relation to unbalance response and control energy. It is found that the isotropic optimal control method, which essentially eliminates the backward unbalance response component, is more efficient than the conventional optimal control in that it gives smaller major whirl radius and yet it often requires less control effort.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 147112-147121
Author(s):  
Kexiang Li ◽  
Zhiquan Deng ◽  
Cong Peng ◽  
Gucai Pang ◽  
Lei Mei ◽  
...  

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jing Wang ◽  
Shaojuan Ma ◽  
Peng Hao ◽  
Hehui Yuan

In this paper, the Hopf bifurcation and control of the magnetic bearing system under an uncertain parameter are investigated. Firstly, the two-degree-of-freedom magnetic bearing system model with uncertain parameter is established. The method of orthogonal polynomial approximation is used to obtain the equivalent magnetic bearing model which is deterministic. Secondly, combining mathematical analysis tools and numerical simulations, the Hopf bifurcation of the equivalent model is analyzed. Finally, a hybrid feedback control method (linear feedback control method combined with nonlinear stochastic feedback control method) is introduced to control the Hopf bifurcation behavior of the magnetic bearing system.


2011 ◽  
Vol 460-461 ◽  
pp. 827-830 ◽  
Author(s):  
Jing Feng Mao ◽  
Ai Hua Wu ◽  
Guo Qing Wu ◽  
Xu Dong Zhang

In order to eliminate the chattering phenomena caused by conventional sliding mode control (SMC) method in magnetic bearing system control, this paper proposes a variable rate reaching law approach based sliding mode controller to achieve higher system stability and robustness. In this control law, system states’ normal numbers are brought in to automatic adjust the gain of the switching control part of SMC. The controller output amplitude of chattering can be progressively damped, and the system will converge to zero asymptotically. The system stability is proved by Laypunov theory, and the prerequisite of control law parameters design is deduced out. Simulation results show that the proposed SMC control method has effectiveness in dynamic suspension position tracking performance and obtaining system robustness.


2019 ◽  
Vol 11 (3) ◽  
pp. 168781401983535 ◽  
Author(s):  
Yao-Nan Wang ◽  
Tran Minh Hai

This article presents a robust control method; all of the unknown disturbances and uncertainty values will be rejected. Suspension of active magnetic bearing system is aimed to figure out that the proposed control method is implementable for highly nonlinear unstable system. First, system state is described by dynamic model, with unknown lump of uncertainty value. Subsequently, the cascade control with inner and outer loops is defined by sliding mode control based on disturbance and uncertainty estimator. The outer control loop is used to force the system state converge on the predefined surface, while inner control loop is used to control the current of electrical part of the system. Finally, the simulation results show that the proposed control method is good at tracking trajectory.


2014 ◽  
Vol 529 ◽  
pp. 534-538
Author(s):  
Yuan Yuan Li ◽  
Huang Qiu Zhu

In the paper, the decoupling control method based on least square support vector machine (LS-SVM) inverse system is proposed, and adopting the method realizes decoupling control of an AC-DC three degrees of freedom hybrid magnetic bearing (AC-DC-3DOF-HMB). Aimed at the complicated multivariate nonlinear, strong coupling system of the AC-DC-3DOF-HMB, the reversibility of original system was analyzed, by the ability of least square support vector machines (LS-SVM) in universal approximation and identification fitting to get inverse model of AC-DC three degrees of freedom hybrid magnetic bearing. Then according to the basic principle of inverse system method, the inverse system was connected with the original system. So the complex nonlinear multivariable system is decoupled into three independent pseudo-linear system. The simulation results show that the system was decoupled; the hybrid control method has good dynamic and static performance, verify the feasibility of the proposed control method.


Sign in / Sign up

Export Citation Format

Share Document