scholarly journals Raising the potential of a local market for the reactive power provision by electric vehicles in distribution grids

2019 ◽  
Vol 13 (12) ◽  
pp. 2446-2454 ◽  
Author(s):  
Tiago Sousa ◽  
Seyedmostafa Hashemi ◽  
Peter Bach Andersen
2018 ◽  
Vol 12 (20) ◽  
pp. 4407-4418 ◽  
Author(s):  
Su Su ◽  
Yong Hu ◽  
Shidan Wang ◽  
Wei Wang ◽  
Yutaka Ota ◽  
...  

Energies ◽  
2020 ◽  
Vol 13 (13) ◽  
pp. 3442
Author(s):  
Fábio Retorta ◽  
João Aguiar ◽  
Igor Rezende ◽  
José Villar ◽  
Bernardo Silva

This paper proposes a near to real-time local market to provide reactive power to the transmission system operator (TSO), using the resources connected to a distribution grid managed by a distribution system operator (DSO). The TSO publishes a requested reactive power profile at the TSO-DSO interface for each time-interval of the next delivery period, so that market agents (managing resources of the distribution grid) can prepare and send their bids accordingly. DSO resources are the first to be mobilized, and the remaining residual reactive power is supplied by the reactive power flexibility offered in the local reactive market. Complex bids (with non-curtailability conditions) are supported to provide flexible ways of bidding fewer flexible assets (such as capacitor banks). An alternating current (AC) optimal power flow (OPF) is used to clear the bids by maximizing the social welfare to supply the TSO required reactive power profile, subject to the DSO grid constraints. A rolling window mechanism allows a continuous dispatching of reactive power, and the possibility of adapting assigned schedules to real time constraints. A simplified TSO-DSO cost assignment of the flexible reactive power used is proposed to share for settlement purposes.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 3865 ◽  
Author(s):  
Daniel-Leon Schultis ◽  
Albana Ilo

The large-scale integration of rooftop PVs stalls due to the voltage limit violations they provoke, the uncontrolled reactive power flow in the superordinate grids and the information and communications technology (ICT) related challenges that arise in solving the voltage limit violation problem. This paper attempts to solve these issues using the LINK-based holistic architecture, which takes into account the behaviour of the entire power system, including customer plants. It focuses on the analysis of the behaviour of distribution grids with the highest PV share, leading to the determination of the structure of the Volt/var control chain. The voltage limit violations in low voltage grid and the ICT challenge are solved by using concentrated reactive devices at the end of low voltage feeders. Q-Autarkic customer plants relieve grids from the load-related reactive power. The optimal arrangement of the compensation devices is determined by a series of simulations. They are conducted in a common model of medium and low voltage grids. Results show that the best performance is achieved by placing compensation devices at the secondary side of the supplying transformer. The Volt/var control chain consists of two Volt/var secondary controls; one at medium voltage level (which also controls the TSO-DSO reactive power exchange), the other at the customer plant level.


Sign in / Sign up

Export Citation Format

Share Document