A Study on Compensating Voltage Drop in Distribution Systems due to Nighttime Simultaneous Charging of Electric Vehicles Utilizing Charging Power Adjustment and Reactive Power Injection

2013 ◽  
Vol 133 (2) ◽  
pp. 157-166 ◽  
Author(s):  
Yuki Mitsukuri ◽  
Ryoichi Hara ◽  
Hiroyuki Kita ◽  
Eiji Kamiya ◽  
Shoji Taki ◽  
...  
Author(s):  
I. A Ethmane ◽  
A.K. Mahmoud ◽  
M. Maaroufi ◽  
A. Yahfdhou

T<span>o solve load growth of a hybrid existing electrical system, we at first build generation stations (wind, solar or thermical). And secondly in 2025 year, when the system is so meshed, some buses will be very far from production energy, the transits power will be lower than the transmission capacity, and the voltage drop out margin limit of stability. Therefore it is proposed to install Flexible AC Transmission System (FACTS) devices to enhance the transient power stability and quality in the power system. The power flow analysis of Newton Raphson method is performed on a seven (7) bus system with and without static synchronous compensator (STATCOM). The STATCOM is a shunt connected FACTS devices that are useful for reactive power compensation and mitigation of power quality problems in transmission and distribution systems. These investigations indicate the need of power flow analysis and determine best locations of STATCOM on the proposed system. The results of simulation have been programmed in MATLAB and PSS/E Simulator. In the end the expected disturbances and the power quality enhancement of the network in the horizon 2025 were attenuated by integration of STATCOM that is able to supply or absorb reactive power and to maintain the voltage at 1pu.</span>


2018 ◽  
Vol 57 (3) ◽  
pp. 230-252 ◽  
Author(s):  
Jordi-Roger Riba ◽  
Francesca Capelli

This article analyzes the inductance of different conductive nonmagnetic conductors’ configurations under alternating current supply. The inductance is a key design parameter in tracks of electronic devices, power transmission and distribution systems, and lightning, grounding, and bonding systems. Inductance highly relies on the problem geometry, and under AC supply, it is also influenced by skin and proximity effects. The inductance significantly determines voltage drop in conductors, thus increasing reactive power consumption and limiting conductors’ ampacity. Although this is an important topic, it is seldom studied in detail in undergraduate and even in graduate physics and engineering studies. To this end, this paper compares the results provided by existing closed formulas for simple conductors’ configurations with those attained through two-dimensional finite element method simulations. Finite element method based simulations are increasingly being incorporated in the syllabuses of graduate and undergraduate courses due to their accurate solutions and flexibility, since finite element method models can be applied in a wide range of electrical frequencies and configurations, some of which do not have an analytical solution. The finite element method based approach presented in this paper has been found a valuable complement to the lectures and assignments in electricity courses for engineering students.


In recent years, voltage stability problems have been increasing since power systems operate close to stability limits. The voltage stability problem of a power system is associated with a rapid voltage drop due to heavy system load and it occurs because of inadequate reactive power support at some critical bus. One of the serious consequences of the voltage stability is a system blackout, and this has received more attention in recent years. Accurate determination of stability limit and amount of reactive power injection to stabilize is important.This paper proposes to determine voltage stability margin of a critical bus and also provide amount of reactive power injection to the bus particularly during overload, a simple two bus equivalent model of the power system is used to determine the maximum apparent power for different power factors. Any required apparent power can directly obtained by correcting the reactive power at critical bus. Experimental results support our theoretical findings.


Author(s):  
Eshan Karunarathne ◽  
Jagadeesh Pasupuleti ◽  
Janaka Ekanayake ◽  
Dilini Almeida

<span>Minimization of real power loss and improvement of voltage authenticity of the network are amongst the key issues confronting power systems owing to the heavy demand development problem, contingency of transmission and distribution lines and the financial costs. The distributed generators (DG) has become one of the strongest mitigating strategies for the network power loss and to optimize voltage reliability over integration of capacitor banks and network reconfiguration. This paper introduces an approach for the optimizing the  placement and sizes of different types of DGs in radial distribution systems using a fine-tuned particle swarm optimization (PSO). The suggested approach is evaluated on IEEE 33, IEEE 69 and a real network in Malaysian Context. Simulation results demonstrate the productiveness of active and reactive power injection into the electric power system and the comparison depicts that the suggested fine-tuned PSO methodology could accomplish a significant reduction in network power loss than the other research works.</span>


Sign in / Sign up

Export Citation Format

Share Document