Radar cross-section reduction for a microstrip patch antenna using PIN diodes

2012 ◽  
Vol 6 (6) ◽  
pp. 670 ◽  
Author(s):  
Y. Shang ◽  
S. Xiao ◽  
M.-C. Tang ◽  
Y.-Y. Bai ◽  
B. Wang
2019 ◽  
Vol 13 (10) ◽  
pp. 1719-1725 ◽  
Author(s):  
Jianxing Li ◽  
Tayyab Ali Khan ◽  
Xianjia Meng ◽  
Juan Chen ◽  
Gantao Peng ◽  
...  

2018 ◽  
Vol 10 (9) ◽  
pp. 1042-1047 ◽  
Author(s):  
Jiakai Zhang ◽  
Haixiong Li ◽  
Qi Zheng ◽  
Jun Ding ◽  
Chenjiang Guo

AbstractIn this study, a new microstrip patch antenna with wideband radar cross-section (RCS) reduction is presented. The RCS of the proposed antenna was reduced by subtracting the current-direction slots of the patch, with the radiation performance sustained not only for the current-direction subtraction, but also for the no modification in the ground plane. Modified and reference antenna were fabricated and measured. The simulation and measurement results showed that the modified antenna reduced the in-band and out-band RCS simultaneously with no detriment to the radiation performance. In the frequency band from 3.9 to 8.1 GHz, the RCS of the modified antenna was reduced in the whole band compared with the RCS of the reference antenna. The maximum RCS reduction was 7 dB at a frequency of 6.7 GHz.


Author(s):  
Sunil P. Lavadiya ◽  
Vishal Sorathiya ◽  
Sunny Kanzariya ◽  
Bhavik Chavda ◽  
Osama S. Faragallah ◽  
...  

2020 ◽  
Vol 70 (5) ◽  
pp. 486-492
Author(s):  
Manoj Kumar Garg ◽  
Jasmine Saini

A dual-frequency and radiation pattern reconfigurable microstrip patch antenna for detecting a stationary as well as a non-stationary target is described. Six angular patches, that collectively form a circular shape, are used. All the six patches radiate one by one after a fixed interval of time and their feed controlling is done by six PIN diodes. The switching of PIN diodes is controlled by an embedded biasing network. This antenna provides radiation beam scanning characteristics. It gives the main lobe scanning at every 60o clockwise (or anticlockwise) continuously by applying a signal to patches one by one. The purpose of introducing the slot is to get the radiation pattern in the desired direction since by changing the length, width, and position of the slot, the direction of the radiation pattern can be controlled. The slotted antenna operates in a C band with two frequencies 4.21 GHz and 4.82 GHz and provides a radiation pattern, 90o apart from each other. The scanning rate of 0.6 deg/ms is obtained; however, the scanning rate can be changed with the help of ATMEGA 2560 microcontroller. This compact Microstrip patch antenna can be widely used for short-range applications i.e. ground surveillance radar, missile control, mobile battlefield surveillance for military and many other applications in a modern wireless communication system. The designed antenna along with the switching application will be able to track the stationary as well as a non-stationary target.


Frequenz ◽  
2020 ◽  
Vol 74 (7-8) ◽  
pp. 247-253
Author(s):  
Wen Tao Li ◽  
Meng Wei ◽  
Bahareh Badamchi ◽  
Harish Subbaraman ◽  
Xiaowei Shi

AbstractIn this paper, a novel tri-band reconfigurable patch antenna with simple structure is presented. By changing the on-off state of only two PIN diodes, the antenna can operate in three bands, namely X-band, Ku-band, and Ka-band. The overall size of the antenna is 0.24λL × 0.5λL × 0.019λL, where λL is the free-space wavelength of the lowest operating frequency. A prototype is fabricated and measured to verify the design. The measurement results are in good agreement with the simulation results, which indicate that the proposed antenna can be flexibly switched between three bands of 10.9–11.18 GHz, 15.65–15.9 GHz, and 32.3–33.6 GHz with stable radiation patterns.


Sign in / Sign up

Export Citation Format

Share Document