slotted antenna
Recently Published Documents


TOTAL DOCUMENTS

128
(FIVE YEARS 37)

H-INDEX

9
(FIVE YEARS 2)

Author(s):  
Mahdi Moradian

Abstract The dumbbell-shaped longitudinal slot antennas are employed as a replacement for the round-ended longitudinal slot antennas. Each dumbbell-shaped slot is excited by an iris and a septum that have offsets from the waveguide centerlines. All the slots are also cut along the waveguide centerlines. It is demonstrated that the resonant length of the proposed dumbbell-shaped slot antennas is much smaller than the round-ended longitudinal slot antennas. Hence, the end-to-end spacings between the adjacent radiating slots as well as the end-to-end spacings between the coupling and the radiating slots increased noticeably in comparison with the arrays consist of the round-ended longitudinal slot antennas. This fact indicates that one can neglect the mutual coupling between the neighboring slots that are associated with the exciting higher-order modes at the slot positions. To better demonstrate the effectiveness of the proposed dumbbell-shaped slot antennas, a planar array antenna consists of the proposed dumbbell-shaped slot antennas have been designed, implemented, and tested. The measurement and the simulation results confirm the effectiveness of the proposed slot antennas.


Frequenz ◽  
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Hamsakutty Vettikalladi ◽  
Waleed Tariq Sethi ◽  
Mohammed Himdi ◽  
Majeed Alkanhal

Abstract This article presents a 60 GHz coplanar fed slotted antenna based on substrate integrated waveguide (SIW) technology for beam-tilting applications. The longitudinal passive slots are fed via associated SIW holes adjacent to the coplanar feed while the main excitation is provided from the microstrip-to-SIW transition. The antenna array achieves an impedance bandwidth of 57–64 GHz with gains reaching to 12 dBi. The passive SIW slots are excited with various orientations of coplanar feeds and associated holes covering an angular beam-tilting from −56° to +56° with an offset of 10° at the central frequency. The novelty of this work is; beam-tilting is achieved without the use of any active/passive phase shifters which improves the design in terms of losses and provide a much simpler alternative compared to the complex geometries available in the literature at the 60 GHz band.


Electronics ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1415
Author(s):  
Mian Muhammad Kamal ◽  
Shouyi Yang ◽  
Saad Hassan Kiani ◽  
Muhammad Rizwan Anjum ◽  
Mohammad Alibakhshikenari ◽  
...  

This article presents compact and novel shape ring-slotted antenna array operating at mmWave band on central frequency of 28 GHz. The proposed structure designed at 0.256 mm thin Roggers 5880 is composed of a ring shape patch with a square slot etched at the top mid-section of partial ground plane. Through optimizing the ring and square slot parameters, a high bandwidth of 8 GHz is achieved, ranging from 26 to 32 GHz, with a simulated gain of 3.95 dBi and total efficiency of 96% for a single element. The proposed structure is further transformed in a 4-element linear array manner. With compact dimensions of 20 mm × 22 mm for array, the proposed antenna delivers a high simulated gain of 10.7 dBi and is designed in such a way that it exhibits dual beam response over the entire band of interest and simulated results agree with fabricated prototype measurements.


2021 ◽  
Vol 65 (1) ◽  
pp. 69-73
Author(s):  
Djelloul Aissaoui ◽  
Abdelhalim Chaabane ◽  
Ahcene Boualleg ◽  
Mohammed Guerroui

Compact coplanar waveguide Ultra-wideband (UWB) monopole antenna with band notched characteristics is presented in this paper. The band rejection is achieved by etching a circular slot on the radiating patch. The antenna is printed on the FR4-Epoxy substrate with overall dimensions of 23.5 × 31 × 1.5 mm3. The measured results indicate that the antenna operates in the frequency range from 1.76 to 11.07 GHz and rejects the band 2.42 to 5.37 GHz with an acceptable measured input impedance over the whole operating frequency bandwidth. Furthermore, the simulated results indicate that the antenna exhibits stable radiation patterns with appreciable gain and efficiency over the whole operating band except at the notched-band. Accordingly, this antenna provides a good solution for wireless communication systems with good characteristics.


Author(s):  
Archana Lala ◽  
Kunal Lala ◽  
Vinod Kumar Singh

In this chapter, artificial neural network is used for the estimation of bandwidth of a dual feed microstrip antenna. The MLPFFBP-ANN and RBF-ANN are used to implement the neural network model. The simulated values for training and testing the neural network are obtained by simulating the antenna on IE3D software. The results obtained by using ANNs and IE3D simulation are compared and are found quite acceptable, and also it is concluded that RBF network is more accurate and fast as compared to back propagation algorithm of MLPFFBP. The anticipated is applicable to operate in triple band from 2.208GHz-5.35GHz, 2.358GHz-2.736GHz, and 3.815GHz-5.143GHz. The antenna is also fabricated with FR-4 glass epoxy material. The experimental results, simulated results of IE3D, and simulated results of neural network are compared.


Sign in / Sign up

Export Citation Format

Share Document