Short-circuit equivalence between rectangular waveguides of regular sidewalls (rectangular waveguide) and sidewalls of cylinders (substrate-integrated rectangular waveguides), plus its extension to cavity

2007 ◽  
Vol 1 (3) ◽  
pp. 639 ◽  
Author(s):  
W. Che ◽  
L. Xu ◽  
D. Wang ◽  
K. Deng ◽  
Y.L. Chow
1954 ◽  
Vol 32 (11) ◽  
pp. 694-701 ◽  
Author(s):  
R. A. Hurd ◽  
H. Gruenberg

Using a method based on the calculus of residues, a rigorous solution has been obtained for the problem of the bifurcation of a rectangular waveguide. Expressions are given for the amplitudes of all the reflected and transmitted modes in the guide. A comparison is made with results obtained by the transform method of Wiener and Hopf.


2011 ◽  
Vol 130-134 ◽  
pp. 529-533
Author(s):  
Jian Qin Deng ◽  
Wan Shun Jiang ◽  
Yue Min Ning

A novel spatial multilayer doubler is proposed in the paper. It is designed by tray approach in rectangular waveguide. The doubler consists of multilayer multiplier circuits, which are parallel each other. Comparing with traditional single layer doubler, the spatial multilayer doubler has higher 1dB compression point, so the output power can be increased when input power is increased. Both the input port and the output port of the doubler are rectangular waveguides. In order to achieve the transition from rectangular waveguide to planar circuit, the finline and ridge are used. Multilayer finlines act as divider, which couple power from input rectangular waveguide. Otherwise, multilayer ridges act as combiner, which combine the harmonic power to output rectangular waveguider. The passive circuits of the spatial multilayer doubler are modeled and analyzed with FDTD method. From the results, we can see that the passive circuits designed in the paper have very low insertion loss.


Author(s):  
V.N. Pochernyaev ◽  
N. M. Syvkova

. In the article, the external parameters of the connection of a rectangular waveguide partially filled of linear dielectric with a rectangular waveguide partially filled of a nonlinear dielectric are determined. Knowledge of the external parameters of such a connection ensures the design of devices with open nonlinear elements. Promising microwave paths of radio engineering systems based on rectangular waveguides partially filled of dielectric include a wide variety of active and passive microwave devices. The plane-transverse junction of these waveguides is considered for various geometric dimensions of dielectric plates and their relative permittivity. Such a junction is characterized by reactive conductivity, which is determined through the sum of the reactive conductivities of local fields. The transverse electric field at the junction is represented through the eigenvector function of the geometric surface, which coincides with the cross section of the waveguides. The scattering matrix of the plane-transverse junction is determined through the conductivity of the sections of the two waveguides and the conductivity of the plane-transverse junction. The dependences of the traveling wave coefficient and the modulus of the reflection coefficient on the geometric dimensions of the dielectric plate are plotted taking into account the local fields generated at the plane transverse junction. At the junction of two waveguides, not only changed the geometric dimensions of the dielectric plates along the wide and narrow walls of the waveguide, but also their relative permittivity. In one case, two higher types of waves were taken into account: quasi - H30 and quasi - H12, in the other case - four higher types of waves: quasi - H30, quasi - H12, quasi - E12, quasi - H50. Calculations show that an increase in the number of higher types of waves has practically no effect on the accuracy of calculations. The results obtained indicate the rapid internal convergence of the obtained solutions and the correct choice of the transverse electric eigenvector function of rectangular waveguides partially filled of dielectric as approximate the field on the junction of two waveguides.


2010 ◽  
Vol 40-41 ◽  
pp. 331-334
Author(s):  
Jiang An Han ◽  
Jun Xu

A novel millimeter-wave transition from microstrip to rectangular waveguide is introduced in this paper. The theory for this design is explained. The strip conductor on microstrip, which is introduced from the center of a rectangular waveguide broad-wall to its E-plane, is shaped into a triangular loop in the waveguide terminated by a short circuit. A back to back transition operating at Ka band was simulated and fabricated. The experimental results showed the insertion loss of a back to back transition is less than 2.2dB with its return loss greater than 9.1dB from 26.5 GHz to 35.5 GHz.


2006 ◽  
Vol 48 (9) ◽  
pp. 1694-1698 ◽  
Author(s):  
Wenquan Che ◽  
Lei Xu ◽  
Dapeng Wang ◽  
Liang Geng ◽  
Kuan Deng ◽  
...  

Author(s):  
L. P. Lemaire ◽  
D. E. Fornwalt ◽  
F. S. Pettit ◽  
B. H. Kear

Oxidation resistant alloys depend on the formation of a continuous layer of protective oxide scale during the oxidation process. The initial stages of oxidation of multi-component alloys can be quite complex, since numerous metal oxides can be formed. For oxidation resistance, the composition is adjusted so that selective oxidation occurs of that element whose oxide affords the most protection. Ideally, the protective oxide scale should be i) structurally perfect, so as to avoid short-circuit diffusion paths, and ii) strongly adherent to the alloy substrate, which minimizes spalling in response to thermal cycling. Small concentrations (∼ 0.1%) of certain reactive elements, such as yttrium, markedly improve the adherence of oxide scales in many alloy systems.


Sign in / Sign up

Export Citation Format

Share Document