Performance comparison of analogue inter-satellite microwave photonics link using intensity modulation with direct detection and phase modulation with interferometric detection

2015 ◽  
Vol 9 (2) ◽  
pp. 88-95 ◽  
Author(s):  
Zihang Zhu ◽  
Xuan Li ◽  
Shanghong Zhao ◽  
Yongjun Li
2010 ◽  
Vol 10 (2) ◽  
pp. 87-96
Author(s):  
M S Islam

Cross-phase modulation (XPM) changes the state-of-polarization (SOP) of the channels through nonlinear polarization rotation and induces nonlinear time dependent phase shift for polarization components that leads to amplitude modulation of the propagating waves in a wavelength division multiplexing (WDM) system. Due to the presence of birefringence, the angle between the SOP changes randomly and as a result polarization mode dispersion (PMD) causes XPM modulation amplitude fluctuation random in the perturbed channel. In this paper we analytically determine the probability density function of the random angle between the SOP of pump and probe, and evaluate the impact of polarization mode dispersion on XPM in terms of bit error rate, channel spacing etc for a two channel intensity modulation-direct detection WDM system at 10 Gb/s. It is found that the XPM induced crosstalk is polarization independent for channel spacing greater than 3 nm or PMD coefficient larger than 2 ps/√km. We also investigate the dependence of SOP variance on PMD coefficient and channel spacing.


Author(s):  
Jayasudha Koti ◽  
Braj Kishore Mishra

Optical wireless communication (OWC) is an alternative technology to meet the demands of the exponentially-growing high data rate applications run by broadband users. The implementation of single carrier modulation techniques in OWC is an age old technology, but for the last few years research is focused towards the multicarrier modulation techniques in OWC. In OWC, information is carried using intensity modulation and retrieved using direct detection. To perform intensity modulation, the baseband signal should be a unipolar signal. To obtain a unipolar signal, various techniques such as DC-biased orthogonal frequency division multiplexing (DCO-OFDM), Asymmetrically clipped orthogonal frequency division multiplexing (ACO-OFDM), Flip orthogonal frequency division multiplexing (Flip-OFDM) and Unipolar orthogonal frequency division multiplexing (U-OFDM) techniques are reported in the literature. Though the DCO-OFDM is spectrally efficient compared to other techniques it requires more power to achieve the targeted BER. In this article, a convolutional Coded DCO-OFDM (CDCO-OFDM) has been introduced by applying channel coding. A convolutional encoder and a hard-decision Viterbi decoder are considered in CDCO-OFDM. It has been observed that CDCO-OFDM requires less transmitted power than DCO-OFDM to attain the targeted BER. The performance of DCO-OFDM and CDCO-OFDM is evaluated for 4, 16, 64 QAM- 7dB and 13dB bias, in the presence of the additive white Gaussian noise (AWGN) channel. It is observed that CDCO requires less power to transmit than DCO-OFDM for the BER 10-4.


2021 ◽  
Vol 13 (1) ◽  
pp. 1-17
Author(s):  
Younus Nidham Ali Mandalawi ◽  
Syamsuri Yaakob ◽  
Wan Azizun Wan Adnan ◽  
Raja Syamsul Azmir Raja Abdullah ◽  
Mohd Hanif Yaacob ◽  
...  

2017 ◽  
Vol 35 (18) ◽  
pp. 3862-3869 ◽  
Author(s):  
Sher Ali Cheema ◽  
Emilio Rafael Balda ◽  
Mike Wolf ◽  
Martin Haardt

Sign in / Sign up

Export Citation Format

Share Document